×

zbMATH — the first resource for mathematics

Stochastic and delayed stochastic models of gene expression and regulation. (English) Zbl 1180.92033
Summary: Gene expression and gene regulatory networks dynamics are stochastic. The noise in the temporal amounts of proteins and RNA molecules in cells arises from the stochasticity of transcription initiation and elongation (e.g., due to RNA polymerase pausing), translation, and post-transcriptional regulation mechanisms, such as reversible phosphorylation and splicing. This is further enhanced by the fact that most RNA molecules and proteins exist in cells in very small amounts.
Recently, the time needed for transcription and translation to be completed once initiated were shown to affect the stochasticity in gene networks. This observation stressed the need of either introducing explicit delays in models of transcription and translation or to model processes such as elongation at the single nucleotide level. We review stochastic and delayed stochastic models of gene expression and gene regulatory networks. We first present stochastic non-delayed and delayed models of transcription, followed by models at the single nucleotide level. Next, we present models of gene regulatory networks, describe the dynamics of specific stochastic gene networks and available simulators to implement these models.

MSC:
92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ozbudak, E.; Thattai, M.; Kurtser, I.; Grossman, A.; van Oudenaarden, A., Regulation of noise in the expression of a single gene, Nat. genet., 31, 69, (2002)
[2] McAdams, H.; Arkin, A., Stochastic mechanisms in gene expression, Proc. natl. acad. sci. USA, 94, 814, (1997)
[3] Raser, J.; O’Shea, E., Noise in gene expression: origins, consequences, and control, Science, 309, 2010, (2005)
[4] Samoilov, M.; Price, G.; Arkin, A., From fluctuations to phenotypes: the physiology of noise, Sci. STKE, 366, re17, (2006)
[5] Mayr, E., The objects of selection, Proc. natl. acad. sci. USA, 94, 2091, (1997)
[6] Mayr, E., Foreword in lynn margulis, dorion sagan, dorion sagan, acquiring genomes: A theory of the origin of species, (2003), Perseus Publishing
[7] Acar, M.; Mettetal, J.; van Oudenaarden, A., Stochastic switching as a survival strategy in fluctuating environments, Nat. genet., 40, 471, (2008)
[8] Suel, G.; Garcia-Ojalvo, J.; Liberman, L.; Elowitz, M., An excitable gene regulatory circuit induces transient cellular differentiation, Nature, 440, 545, (2006)
[9] Chang, H.; Hemberg, M.; Barahona, M.; Ingber, D.; Huang, S., Transcriptome-wide noise controls lineage choice in Mammalian progenitor cells, Nature, 453, 544, (2008)
[10] Elowitz, M.; Levine, A.; Siggia, E.; Swain, P., Stochastic gene expression in a single cell, Science, 297, 1183, (2002)
[11] Golding, I.; Paulsson, J.; Zawilski, S.; Cox, E., Real-time kinetics of gene activity in individual bacteria, Cell, 123, 1025, (2005)
[12] Raj, A., Stochastic mrna synthesis in Mammalian cells, Plos biol., 4, e309, (2006)
[13] Cai, L.; Friedman, N.; Xie, X., Stochastic protein expression in individual cells at the single molecule level, Nature, 440, 358, (2006)
[14] Yu, J.; Xiao, J.; Ren, X.; Lao, K.; Xie, S., Probing gene expression in live cells, one protein molecule at a time, Science, 311, 1600-1603, 597, (2006)
[15] Kaern, M.; Elston, T.; Blake, W.; Collins, J.J., Stochasticity in gene expression: from theories to phenotypes, Nat. rev. genet., 6, 451, (2005)
[16] Dunlop, M.; Cox, R.; Levine, A.; Murray, R.; Elowitz, M., Regulatory activity revealed by dynamic correlations in gene expression noise, Nat. genet., 40, 1493, (2008)
[17] Paulsson, J., Models of stochastic gene expression, Phys. life rev., 2, 157, (2005)
[18] Neubauerz, Z.; Calef, E., Immunity phase-shift in defective lysogens: non-mutational hereditary change of early regulation of lambda prophage, J. mol. biol., 51, 1, (1970)
[19] Arkin, A.; Ross, J.; McAdams, H., Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda\)-infected Escherichia coli cells, Genetics, 149, 1633, (1998)
[20] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. phys. chem., 81, 2340, (1977)
[21] McAdams, H.; Arkin, A., Simulation of prokaryotic genetic circuits, Annu. rev. biophys. biomol. struct., 27, 199, (1998)
[22] Gillespie, D., Stochastic simulation of chemical kinetics, Annu. rev. phys. chem., 58, 35, (2007)
[23] Karlebach, G.; Shamir, R., Modeling and analysis of gene networks, Nat. rev. mol. cell biol., 9, 770, (2008)
[24] Lewis, J., Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator, Curr. biol., 13, 1398, (2003)
[25] Monk, N., Oscillatory expression of hes1, p53, and NF-kb driven by transcriptional time delays, Curr. biol., 13, 1409, (2003)
[26] Bratsun, D.; Volfson, D.; Tsimring, L.; Hasty, J., Delay-induced stochastic oscillations in gene regulation, Proc. natl. acad. sci. USA, 102, 14593, (2005)
[27] Barrio, M.; Burrage, K.; Leier, A.; Tian, T., Oscillatory regulation of hes1: discrete stochastic delay modelling and simulation, Plos comput. biol., 2, e117, (2006)
[28] Roussel, M.; Zhu, R., Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression, Phys. biol., 3, 274, (2006)
[29] Ribeiro, A.S.; Zhu, R.; Kauffman, S., A general modeling strategy for gene regulatory networks with stochastic dynamics, J. comput. biol., 13, 1630, (2006)
[30] Zhu, R.; Ribeiro, A.S.; Salahub, D.; Kauffman, S.A., Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models, J. theor. biol., 246, 725, (2007)
[31] Zhu, R.; Salahub, D., Delay stochastic simulation of single-gene expression reveals a detailed relationship between protein noise and Mean abundance, FEBS lett., 582, 2905, (2008)
[32] Zeiser, S.; Müller, J.; Liebscher, V., Modeling the hes1 oscillator, J. comput. biol., 14, 984, (2007)
[33] McClure, W., Rate-limiting steps in RNA chain initiation, Proc. natl. acad. sci. USA, 77, 5634, (1980)
[34] Lutz, R.; Lozinski, T.; Ellinger, T.; Bujard, H., Dissecting the functional program of Escherichia coli promoters: the combined mode of action of lac repressor and arac activator, Nucleic acids res., 29, 3873, (2001)
[35] Herbert, K.; La Porta, A.; Wong, B.; Mooney, R.; Neuman, K.; Landick, R.; Block, S., Sequence resolved detection of pausing by single RNA polymerase molecules, Cell, 125, 1083, (2006)
[36] Ribeiro, A.S.; Smolander, O.-P.; Rajala, T.; Hakkinen, A.; Yli-Harja, O., Delayed stochastic model of transcription at the single nucleotide level, J. comput. biol., 16, 539, (2009)
[37] Voliotis, M.; Cohen, N.; Molina-Paris, C.; Liverpool, T., Fluctuations, pauses and backtracking in DNA transcription, Biophys. J., 94, 334, (2008)
[38] Gibson, M.; Bruck, J., Efficient exact stochastic simulation of chemical systems with many species and many channels, J. phys. chem. A, 104, 1876, (2000)
[39] Raser, J.; O’Shea, E., Control of stochasticity in eukaryotic gene expression, Science, 304, 1811, (2004)
[40] Gaffney, E.; Monk, N., Gene expression time delays and Turing pattern formation systems, Bull. math. biol., 68, 99, (2006) · Zbl 1334.92157
[41] Ota, K., Comprehensive analysis of delay in transcriptional regulation using expression profiles, Genome inform., 14, 302, (2003)
[42] Davenport, R.; White, G.; Landick, R.; Bustamante, C., Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase, Science, 287, 2497, (2000)
[43] Ribeiro, A.S., Dynamics of a two-dimensional model of cell tissues with coupled stochastic gene networks, Phys. rev. E, 76, 051915, (2007)
[44] Kierzek, A.; Zaim, J.; Zielenkiewicz, P., The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression, J. biol. chem., 276, 8165, (2001)
[45] Draper, D., (), pp. 902-908
[46] Ross, W.; Gourse, R., Analysis of RNA polymerase – promoter complex formation, Methods, 47, 13, (2009)
[47] Ribeiro, A.S.; Lloyd-Price, J., SGN sim, a stochastic genetic networks simulator, Bioinformatics, 23, 777, (2007)
[48] Ramsey, S.; Orrell, D.; Bolouri, H., Dizzy: stochastic simulation of large-scale genetic regulatory networks, J. bioinform. comput. biol., 3, 415, (2005)
[49] Rigney, D.; Schieve, W., Stochastic model of linear, continuous protein-synthesis in bacterial populations, J. theor. biol., 69, 761, (1977)
[50] Berg, O., A model for statistical fluctuations of protein numbers in a microbial-population, J. theor. biol., 73, 307, (1978)
[51] Paulsson, J.; Berg, O.; Ehrenberg, M., Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation, Proc. natl. acad. sci. USA, 97, 7148, (2000)
[52] Thattai, M.; van Oudenaarden, A., Intrinsic noise in gene regulatory networks, Proc. natl. acad. sci. USA, 98, 8614, (2001)
[53] Swain, P.; Elowitz, M.; Siggia, E., Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. natl. acad. sci. USA, 99, 12795, (2002)
[54] Kauffman, S.A., Metabolic stability and epigenesis in randomly constructed genetic nets, J. theor. biol., 22, 437, (1969)
[55] Aldana, M., Boolean dynamics of networks with scale-free topology, Physica D, 185, 45, (2003) · Zbl 1039.94016
[56] Mestl, T.; Plahte, E.; Omholt, S., A mathematical framework for describing and analyzing gene regulatory networks, J. theor. biol., 176, 291, (1995)
[57] Glass, L., Classification of biological networks by their qualitative dynamics, J. theor. biol., 54, 85, (1975)
[58] Kauffman, S.A., A proposal for using the ensemble approach to understand genetic regulatory networks, J. theor. biol., 230, 581, (2004)
[59] Greive, S.; von Hippel, P., Thinking quantitatively about transcriptional regulation, Nat. rev. mol. cell biol., 6, 221, (2005)
[60] von Hippel, P., An integrated model of the transcription complex in elongation, termination, and editing, Science, 281, 661, (1998)
[61] Landick, R., The regulatory roles and mechanism of transcriptional pausing, Biochem. soc. trans., 34, 1062, (2006)
[62] Uptain, S.; Kane, C.; Chamberlin, M., Basic mechanisms of transcript elongation and its regulation, Annu. rev. biochem., 66, 117, (1997)
[63] Dobrzyński, M.; Bruggeman, F., Elongation dynamics shape bursty transcription and translation, Proc. natl. acad. sci. USA, 106, 2583, (2009)
[64] Gardner, T.; Cantor, C.; Collins, J.J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 339, (2000)
[65] Blake, W.; Kaern, M.; Cantor, C.; Collins, J., Noise in eukaryotic gene expression, Nature, 422, 633, (2003)
[66] Weinberger, L.; Burnett, J.; Toettcher, J.; Arkin, A.; Schaffer, D., Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 tat fluctuations drive phenotypic diversity, Cell, 122, 169, (2005)
[67] Monod, J.; Jacob, F., Teleonomic mechanisms in cellular metabolism, growth, and differentiation, Cold spring harb. symp. quant. biol., 26, 389, (1961)
[68] Chang, H.; Oh, P.; Ingber, D.; Huang, S., Multistable and multistep dynamics in neutrophil differentiation, BMC cell biol., 7, 11, (2006)
[69] Wang, L., Bistable switches control memory and plasticity in cellular differentiation, Proc. natl. acad. sci. USA, 106, 6638, (2009)
[70] Ribeiro, A.S.; Kauffman, S.A., Noisy attractors and ergodic sets in models of gene regulatory networks, J. theor. biol., 247, 743, (2007)
[71] Warren, P.; Wolde, P., Enhancement of the stability of genetic switches by overlapping upstream regulatory domains, Phys. rev. lett., 92, 128101, (2004)
[72] Ribeiro, A.S., Dynamics and evolution of stochastic bistable gene networks with sensing in fluctuating environments, Phys. rev. E, 78, 061902, (2008)
[73] Ribeiro, A.S.; Dai, X.; Yli-Harja, O., Variability of the distribution of differentiation pathway choices regulated by a multipotent delayed stochastic switch, J. theor. biol., 260, 66, (2009) · Zbl 1402.92157
[74] Alberts, B., Molecular biology of the cell, (2002), Garland Publishing NY
[75] Lipshtat, A.; Loinger, A.; Balaban, N.; Biham, O., Genetic toggle switch without cooperative binding, Phys. rev. lett., 96, 188101, (2006)
[76] M. Aldana, S. Coppersmith, L. Kadanoff, in: Ehud Kaplan, Jerrold E. Marsden, Katepalli R. Sreenivasan (Eds.), Perspectives and Problems in Nonlinear Science. A Celebratory Volule in Honor of Lawrence Sirovich, Springer Applied Mathematical Sciences Series, 2003.
[77] Klemm, K.; Bornholdt, S., Stable and unstable attractors in Boolean networks, Phys. rev. E, 72, 055101, (2005)
[78] Greil, F.; Drossel, B., Dynamics of critical kauffman networks under asynchronous stochastic update, Phys. rev. lett., 95, 048701, (2005)
[79] Dai, X.; Yli-Harja, O.; Ribeiro, A.S., Determining noisy attractors of delayed stochastic gene regulatory networks from multiple data sources, Bioinformatics, 25, 2362, (2009)
[80] Hunter, T., Signaling - 2000 and beyond, Cell, 100, 113, (2000)
[81] Holmberg, C.; Tran, S.; Eriksson, J.; Sistonen, L., Multisite phosphorylation provides sophisticated regulation of transcription factors, Trends biochem. sci., 27, (2002)
[82] Ashcroft, M.; Kubbutat, M.; Vousden, K., Regulation of p53 function and stability by phosphorylation, Mol. cell. biol., 19, 1751, (1999)
[83] Bates, S.; Vousden, K., P53 in signalling checkpoint arrest or apoptosis, Curr. opin. genet. dev., 6, 1, (1996)
[84] Cai, X., Exact stochastic simulation of coupled chemical reactions with delays, J. chem. phys., 126, 124108, (2007)
[85] Li, O.; Lang, X., Internal noise-sustained Circadian rhythms in a drosophila model, Biophys. J., 94, 1983, (2008)
[86] Loinger, A.; Biham, O., Stochastic simulations of the repressilator circuit, Phys. rev. E, 76, 051917, (2007)
[87] Elowitz, M.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335, (2000)
[88] Chua, G., Identifying transcription factor functions and targets by phenotypic activation, Proc. natl. acad. sci. USA, 103, 12045, (2006)
[89] Kara, S., Exploring the roles of noise in the eukaryotic cell cycle, Proc. natl. acad. sci. USA, 106, 6471, (2009)
[90] Agrawal, S.; Archer, C.; Schaffer, D., Computational models of the notch network elucidate mechanisms of context-dependent signaling, PLOS comput. biol., 5, e1000390, (2009)
[91] Temme, K., Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within salmonella pathogenicity island 1, J. mol. biol., 377, 47, (2008)
[92] Hensel, S.; Rawlings, J.; Yin, J., Stochastic kinetic modeling of vesicular stomatitis virus intracellular growth, Bull. math. biol., 71, 1671, (2009) · Zbl 1173.92010
[93] Pahle, J., Biochemical simulations: stochastic, approximate stochastic and hybrid approaches, Brief. bioinform., 10, 53, (2009)
[94] Appleby, J.; Kelly, C., Spurious oscillation in a uniform Euler discretisation of linear stochastic differential equations with vanishing delay, J. comput. appl. math., 205, 923, (2007) · Zbl 1122.65011
[95] Guantes, R.; Poyatos, J.F., Multistable decision switches for flexible control of epigenetic differentiation, Plos comput. biol., 4, 11, e1000235, (2008)
[96] Schlicht, R.; Winkler, S., A delay stochastic process with applications in molecular biology, J. math. biol., 57, 613, (2008) · Zbl 1161.92002
[97] Foster, D., A model of sequential branching in hierarchical cell fate determination, J. theor. biol., 260, 4, 589, (2009) · Zbl 1402.92052
[98] Schultz, D.; Ben Jacob, E.; Onuchic, J.N.; Wolynes, P., Molecular level stochastic model for competence cycles in bacillus subtilis, Proc. natl. acad. sci. USA, 104, 17582, (2007)
[99] Weinberger, L.S.; Burnett, J.C.; Toettcher, J.E.; Arkin, A.P.; Schaffer, D.V., Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 tat fluctuations drive phenotypic diversity, Cell, 122, 169, (2005)
[100] Monk, N.A.M., Oscillatory expression of hes1, p53, and NF-kb driven by transcriptional time delays, Curr. biol., 13, 1409, (2003)
[101] Bai, L., Single molecule analysis of RNA polymerase transcription, Annu. rev. biophys. biomol. struct., 35, 343, (2006)
[102] Lee, D.; Phung, L.; Stewart, J.; Landick, R., Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences, J. biol. chem., 265, 15145, (1990)
[103] Orrell, D.; Ramsey, S.; deAtauri, P.; Bolouri, H., A method to estimate stochastic noise in large genetic regulatory networks, Bioinformatics, 21, 208, (2005)
[104] Ramsey, S.; Orrell, D.; Bolouri, H., Dizzy: stochastic simulation of large-scale genetic regulatory networks, J. bioinform. comput. biol., 3, 2, 415, (2005)
[105] Gillespie, D.T., Approximate accelerated stochastic simulation of chemically reacting systems, J. chem. phys., 115, 1716, (2001)
[106] Rathinam, M.; Petzold, L.; Cao, Y.; Gillespie, D., Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method, J. chem. phys., 119, 12784, (2003)
[107] Gillespie, D.T.; Petzold, L.R., Improved leap-size selection for accelerated stochastic simulation, J. chem. phys., 119, 8229, (2004)
[108] Dhar, P., Cellware – a multi-algorithmic software for computational systems biology, Bioinformatics, 20, 1319, (2004)
[109] Goryanin, I.; Hodgman, T.C.; Selkov, E., Mathematical simulation and analysis of cellular metabolism and regulation, Bioinformatics, 15, 749, (1999)
[110] Mendes, P., Biochemistry by numbers: simulation of biochemical pathways with gepasi 3, Trends biochem. sci., 22, 361, (1997)
[111] Dang, Q.; Frieden, C., New pc versions of the kinetic-simulation and Fitting programs, kinsim and fitsim, Trends biochem. sci., 22, 317, (1997)
[112] Xu, Z.; Cai, X., Unbiased tau-leap methods for stochastic simulation of chemically reacting systems, J. chem. phys., 128, 54112, (2008)
[113] Leier, A.; Marquez-Lago, T.; Burrage, K., Generalized binomial \(\tau\)-leap method for biochemical kinetics incorporating both delay and intrinsic noise, J. chem. phys., 128, 205107, (2008)
[114] Cai, L.; Dalal, C.K.; Elowitz, M.B., Frequency-modulated nuclear localization bursts coordinate gene regulation, Nature, 455, 485, (2008)
[115] Andrews, S.; Bray, D., Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Phys. biol., 1, 137, (2004)
[116] Casanova, H., Distributing mcell simulations on the grid, Int. J. high perform. comput. appl., 15, 243, (2001)
[117] Lindahl, E.; Hess, B.; van der Spoel, D., Gromacs 3.0: a package for molecular simulation and trajectory analysis, J. mol. model., 7, 306, (2001)
[118] van Zon, J.; Wolde, P., Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space, J. chem. phys., 123, 1, (2005)
[119] Dobrzynski, M.; Rodriguez, J.; Kaandorp, J.; Blom, J., Computational methods for diffusion-influenced biochemical reactions, Bioinformatics, 23, 1969, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.