Trowbridge, C. W. Low frequency electromagnetic field computation in three dimensions. (English) Zbl 0567.73105 Comput. Methods Appl. Mech. Eng. 52, 653-674 (1985). See the preview in Zbl 0544.73138. Cited in 2 Documents MSC: 74F15 Electromagnetic effects in solid mechanics 74S99 Numerical and other methods in solid mechanics Keywords:low frequency electromagnetic field; differential operator formulations; numerical solutions; classical equations of electromagnetics; finite element method; numerical examples; two-dimensional static and eddy currents problems; three-dimensional formulations; nonlinear static problems; total and reduced scalar potentials; magnetic vector potentials; static limiting case Citations:Zbl 0544.73138 PDFBibTeX XMLCite \textit{C. W. Trowbridge}, Comput. Methods Appl. Mech. Eng. 52, 653--674 (1985; Zbl 0567.73105) Full Text: DOI References: [1] Maxwell, J. C., A dynamical theory of the electromagnetic field, Roy. Soc. Trans., 155, 459-512 (1864) [2] Stratton, J. A., (Electromagnetic Theory (1941), McGraw-Hill: McGraw-Hill New York), 486 · JFM 67.1119.01 [3] Stratton, J. A., Electromagnetic Theory, ((1941), McGraw-Hill: McGraw-Hill New York), 15 · JFM 67.1119.01 [4] Portis, Alan M., Electromagnetic Fields, Sources and Media, ((1978), Wiley: Wiley New York), 638 [5] Simkin, J.; Trowbridge, C. W., Which potential?, RL-78-001/B (1978) · Zbl 0401.65072 [6] Armstrong, A. G.; Collie, C. J.; Simkin, J. S.; Trowbridge, C. W., The solution of three-dimensional magnetostatic problems using scalar potentials, (Proc. COMPUMAG Conf.. Proc. COMPUMAG Conf., Grenoble (1978)), 1.2 [7] Winslow, A. A., Numerical solution of the quasi-linear Poisson equation in a non-uniform triangular mesh, J. Comput. Phys., 1, 149-172 (1971) · Zbl 0254.65069 [8] Chari, M. W.K.; Silvester, P., Finite element analysis of magnetically saturated dc machines, IEEE Trans. Power Apparat. Syst., 90, 2362 (1971) [9] Polak, S. J.; Wachters, A.; de Beer, A., An account of the use of the finite element method for magnetostatics, (Proc. COMPUMAG Conf.. Proc. COMPUMAG Conf., Oxford (1976)) [10] Biddlecombe, C. S.; Diserens, N. J.; Riley, C.; Simkin, J., PE2D user guide, Rutherford Laboratory, Rept. RL-81-089 (1983), Version 6.3 [11] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill Maidenhead · Zbl 0435.73072 [12] Zienkiewicz, O. C.; Lyness, J.; Owen, D. R.J., Three-dimensional magnetic field determination using a scalar potential — a finite element solution, IEEE Trans. Magnetics, 13, 1649-1656 (1977) [13] Simkin, J.; Trowbridge, C. W., On the use of the total scalar potential in the numerical solution of field problems in electromagnets, Internat. J. Numer. Meths. Engrg., 14, 423-440 (1979) · Zbl 0401.65072 [14] Simkin, J.; Trowbridge, C. W., Three-dimensional non-linear electromagnetic field computations using scalar potentials, (Proc. Inst. Elec. Engrg., 127 B (1980)), (6) · Zbl 0401.65072 [15] Wolff, W.; Muller, W., General numerical solution of the magnetostatic equations, Wiss. Ber. AEGTelefunken, 49, 3, 77-86 (1976) [16] IEEE Trans. Magnetics, 18, 2, 617 (1982) [17] McDaniel, T. W.; Fernandez, R. B.; Root, R. R.; Anderson, R. B., An accurate scalar potential finite element method for linear, two-dimensional magnetostatic problems, Internat. J. Numer. Meths. Engrg., 19, 725-737 (1983) · Zbl 0512.65089 [18] Baker, F. E.; Brown, S. H.; Brauer, J. R.; Gerhardt, T. R., Comparison of magnetic fields computed by finite element and classical series methods, Internat. J. Numer. Meths. Engrg., 19, 271-280 (1983) · Zbl 0503.65072 [19] IEEE Trans. Magnetics, 18, 2, 431 (1982) [20] IEEE Trans. Magnetics, 18, 2, 486 (1982) [21] IEEE Trans. Magnetics, 18, 2, 492 (1982) [22] IEEE Trans. Magnetics, 19, 6 (1983) [23] Balchin, J. J.; Davidson, J. A.M., Numerical method for calculating magnetic flux and eddy current distribution in three dimensions, (IEE Proc. A, 127 (1980)), 46-53, (1) [24] Kelly, D. W.; Gago, S. R.; Zienkiewicz, O. C.; Babuška, I., A posteriori error analysis and adaptive processes in the finite element method, Internat. J. Numer. Meths. Engrg., 19, 1593 (1983), Parts 1 and 2 · Zbl 0534.65068 [25] Simkin, J., (COMPUMAG Conference Proceedings (1976), Rutherford Appleton Laboratory: Rutherford Appleton Laboratory Oxford) [26] Sabonnadiere, J. C., (COMPUMAG Conference Proceedings (1979), Laboratoire d’Electrotechnique de Grenoble: Laboratoire d’Electrotechnique de Grenoble Grenoble), ERA 524 CNRS [27] (COMPUMAG Conference Proceedings. COMPUMAG Conference Proceedings, Chicago, IL, 1981. COMPUMAG Conference Proceedings. COMPUMAG Conference Proceedings, Chicago, IL, 1981, IEEE Trans. Magnetics, 18 (1982)), (2) [28] (COMPUMAG Conference Proceedings. COMPUMAG Conference Proceedings, Genoa, 1983. COMPUMAG Conference Proceedings. COMPUMAG Conference Proceedings, Genoa, 1983, IEEE Trans. Magnetics, 19 (1983)), (6) [29] (COMPUMAG Conference Proceedings. COMPUMAG Conference Proceedings, Fort Collins, CO (1985)) [30] (Finite Elements in Electrical and Magnetic Field Problems (1979), Wiley: Wiley Chichester), 191-213 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.