×

zbMATH — the first resource for mathematics

Three-coloring statistical model with domain wall boundary conditions: trigonometric limit. (English. Russian original) Zbl 1205.05094
Theor. Math. Phys. 161, No. 2, 1451-1459 (2009); translation from Teor. Mat. Fiz. 161, No. 2, 154-163 (2009).
Summary: We consider a nontrivial trigonometric limit of the three-coloring statistical model with the domain wall boundary conditions. In this limit, we solve the previously constructed functional equations and find a new determinant representation for the partial partition functions.

MSC:
05C15 Coloring of graphs and hypergraphs
82D25 Statistical mechanical studies of crystals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. V. Razumov and Yu. G. Stroganov, Theor. Math. Phys., 161, 1325–1339 (2009); arXiv:0805.0669v2 [mathph] (2008). · Zbl 1180.82195 · doi:10.1007/s11232-009-0119-y
[2] R. J. Baxter, J. Math. Phys., 11, 3116–3124 (1970). · Zbl 0211.26904 · doi:10.1063/1.1665102
[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982). · Zbl 0538.60093
[4] Yu. G. Stroganov, ”General properties and special solutions of the triangle equation: Calculation of the partition sum for certain models on the plane lattice [in Russian],” Candidate’s dissertation, Inst. High Energy Physics, Protvino (1982).
[5] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[6] Yu. G. Stroganov, Theor. Math. Phys., 146, 53–62 (2006); arXiv:math-ph/0204042v3 (2002). · Zbl 1177.82042 · doi:10.1007/s11232-006-0006-8
[7] A. V. Razumov and Yu. G. Stroganov, Theor. Math. Phys., 141, 1609–1630 (2004); arXiv:math-ph/0312071v1 (2003). · Zbl 1178.05011 · doi:10.1023/B:TAMP.0000049757.07267.9d
[8] A. V. Razumov and Yu. G. Stroganov, Theor. Math. Phys., 148, 1174–1198 (2006); arXiv:math-ph/0504022v1 (2005). · Zbl 1177.15041 · doi:10.1007/s11232-006-0111-8
[9] A. V. Razumov and Yu. G. Stroganov, Theor. Math. Phys., 149, 1639–1650 (2006); arXiv:math-ph/0507003v2 (2005). · Zbl 1177.15035 · doi:10.1007/s11232-006-0148-8
[10] R. J. Baxter, Ann. Phys., 76, 25–47 (1973). · Zbl 1092.82513 · doi:10.1016/0003-4916(73)90440-5
[11] H. Rosengren, Adv. Appl. Math., 43, 137–155 (2009); arXiv:0801.1229v2 [math.CO] (2008). · Zbl 1173.05300 · doi:10.1016/j.aam.2009.01.003
[12] S. Okada, J. Algebra, 205, 337–367 (1998). · Zbl 0915.20023 · doi:10.1006/jabr.1997.7408
[13] S. Okada, J. Algebraic Combin., 23, 43–69 (2006); arXiv:math/0408234v1 (2004). · Zbl 1088.05012 · doi:10.1007/s10801-006-6028-3
[14] A. Lenard, J. Math. Phys., 2, 682–693 (1961). · Zbl 0104.44604 · doi:10.1063/1.1703757
[15] Yu. G. Stroganov, ”Izergin-Korepin determinant reloaded,” arXiv:math-ph/0409072v1 (2004).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.