Gordevskyy, V. D. Rotating flows with acceleration and compaction in the model of hard spheres. (English. Russian original) Zbl 1423.76397 Theor. Math. Phys. 161, No. 2, 1558-1566 (2009); translation from Teor. Mat. Fiz. 161, No. 2, 278-286 (2009). Summary: We construct a model of the interaction between two flows in a gas of hard spheres, each of which has the structure of an accelerating and compacting rotating flow. We obtain several conditions sufficient for the uniform integral or the “mixed” norm of the difference between the left- and right-hand sides of the Boltzmann equation to be arbitrarily small. Cited in 1 Document MSC: 76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics 76U05 General theory of rotating fluids Keywords:hard sphere; Boltzmann equation; “mixed” discrepancy; rotating flow; acceleration-compaction PDF BibTeX XML Cite \textit{V. D. Gordevskyy}, Theor. Math. Phys. 161, No. 2, 1558--1566 (2009; Zbl 1423.76397); translation from Teor. Mat. Fiz. 161, No. 2, 278--286 (2009) Full Text: DOI References: [1] C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic, Edinburgh (1975). · Zbl 0403.76065 [2] T. Carleman, Problèmes mathèmatiques dans la thèorie cinètique des gaz (Publ. Sci. Inst. Mittag-Leffler), Vol. 2, AlmquistWiksells, Uppsala (1957). · Zbl 0077.23401 [3] V. D. Gordevskyy, Theor. Math. Phys., 126, 234–249 (2001). · Zbl 0997.35055 · doi:10.1023/A:1005204029203 [4] H. Grad, Comm. Pure Appl. Math., 2, 331–407 (1949). · Zbl 0037.13104 · doi:10.1002/cpa.3160020403 [5] O. G. Fridlender, J. Appl. Math. Mech., 29, 1147–1151 (1965). · doi:10.1016/0021-8928(65)90139-5 [6] M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1967). [7] V. D. Gordevskyy, Math. Methods Appl. Sci., 27, 231–247 (2004). · Zbl 1038.35070 · doi:10.1002/mma.455 [8] V. D. Gordevsky, Math. Phys. Anal. Geom., 2, 168–176 (1995). [9] V. D. Gordevsky, Math. Phys. Anal. Geom., 4, 46–58 (1995). [10] V. G. Gordevskii, Theor. Math. Phys., 114, 99–108 (1998). · Zbl 0967.76083 · doi:10.1007/BF02557112 [11] V. D. Gordevskyy, Nonlinear Anal., 53, 481–494 (2003). · Zbl 1021.76045 · doi:10.1016/S0362-546X(02)00313-9 [12] V. D. Gordevsky, Math. Methods Appl. Sci., 21, 1479–1494 (1998). · Zbl 0915.76076 · doi:10.1002/(SICI)1099-1476(19981110)21:16<1479::AID-MMA5>3.0.CO;2-I [13] V. D. Gordevsky, Theor. Math. Phys., 135, 704–713 (2003). · Zbl 1178.82064 · doi:10.1023/A:1023678701199 [14] V. D. Gordevskyy and N. V. Andriyasheva, Zh. Mat. Fiz. Anal. Geom., 5, 38–53 (2009). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.