zbMATH — the first resource for mathematics

Algorithms and software for total variation image reconstruction via first-order methods. (English) Zbl 1181.94009
Summary: This paper describes new algorithms and related software for total variation (TV) image reconstruction, more specifically: denoising, inpainting, and deblurring. The algorithms are based on one of Nesterov’s first-order methods, tailored to the image processing applications in such a way that, except for the mandatory regularization parameter, the user needs not specify any parameters in the algorithms. The software is written in C with interface to Matlab (version 7.5 or later), and we demonstrate its performance and use with examples.
Reviewer: Reviewer (Berlin)

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65R32 Numerical methods for inverse problems for integral equations
FFTW; Matlab; na28; RecPF
Full Text: DOI
[1] Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. J. Math. Imaging Vis. 23, 199–211 (2005) · doi:10.1007/s10851-005-6467-9
[2] Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307–327 (2009) · Zbl 1287.94012 · doi:10.1007/s10851-009-0149-y
[3] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) · Zbl 1058.90049
[4] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004) · Zbl 1366.94056 · doi:10.1023/B:JMIV.0000011320.81911.38
[5] Chan, T.F., Shen, J.: Image processing and analysis: variational, PDE, wavelet, and stochastic methods. SIAM, Philadelphia (2005) · Zbl 1095.68127
[6] Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999) · Zbl 0929.68118 · doi:10.1137/S1064827596299767
[7] Combettes, P.L., Pennanen, T.: Generalized mann iterates for constructing fixed points in Hilbert spaces. J. Math. Anal. Appl. 275, 521–536 (2002) · Zbl 1032.47034 · doi:10.1016/S0022-247X(02)00221-4
[8] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. SIAM, Philadelphia (2000) · Zbl 0958.65071
[9] Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation. Part I: fast and exact optimization. J. Math. Imaging Vis. 26, 261–276 (2006) · Zbl 05193696 · doi:10.1007/s10851-006-8803-0
[10] FFTW: Freely available C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions. http://www.fftw.org (2009)
[11] Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and 1-minimization. SIAM J. Numer. Anal. (2009, in press) · Zbl 1203.65098
[12] Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005) · doi:10.1109/JPROC.2004.840301
[13] Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27, 622–645 (2005) · Zbl 1094.68108 · doi:10.1137/040608982
[14] Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[15] Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006) · Zbl 1112.68127
[16] Krishnan, D., Ping, L., Yip, A.M.: A primal-dual active-set methods for non-negativity constrained total variation deblurring problems. IEEE Trans. Image Process. 16, 2766–2777 (2007) · Zbl 05453692 · doi:10.1109/TIP.2007.908079
[17] Nesterov, Yu.: Introductory lectures on convex optimization. Kluwer, Dordrecht (2004) · Zbl 1086.90045
[18] Nesterov, Yu.: Smooth minimization of nonsmooth functions. Math. Program. Ser. A 103, 127–152 (2005) · Zbl 1079.90102 · doi:10.1007/s10107-004-0552-5
[19] Nesterov, Yu.: Excessive gap technique in non-smooth convex optimization. SIAM J. Optim. 16, 235–249 (2005) · Zbl 1096.90026 · doi:10.1137/S1052623403422285
[20] Nesterov, Yu.: Gradient methods for minimizing composite objective functions. CORE Discussion Papers series, Université Catholique de Louvain, Center for Operations Research and Econometrics. http://www.uclouvain.be/en-44660.html (2007)
[21] Vogel, C.R.: Computational methods for inverse problems. SIAM, Philadelphia (2002) · Zbl 1008.65103
[22] Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009) · Zbl 1191.94029 · doi:10.1137/070696143
[23] Yang, J., Zhang, Y., Yin, W., Wang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008) · Zbl 1187.68665 · doi:10.1137/080724265
[24] Zhu, M., Wright, S., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. (2008). doi: 10.1007/s10589-008-9225-2 · Zbl 1208.90165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.