×

Forward speed motions of a submerged body. The Cauchy problem. (English) Zbl 0568.35059

The linearized problem for the motion of a submerged body in a perfect, inviscid, irrotational fluid, occupying an unbounded domain of \(R^ 3\), moving forward with a forced motion depending on (x,y) but not z, is \(\Delta u=0\), \(u|_{\Sigma}=\phi\), \(\partial u/\partial n|_{\Gamma}=f(t,\cdot)\), and \(\phi_ t-a\cdot \phi_ x+w\cdot \phi_ y=-b\eta\), \(\eta_ t-a\cdot \eta_ x+(w\cdot \eta)_ y=du/\partial n|_{\Sigma},\) \(\phi |_{t=0}=\phi_ 0\), \(\eta |_{t=0}=\eta_ 0\). In this paper the elliptic and the initial- value problem are viewed as coupled by a pseudo-differential operator T. The Yosida approximation \(T^{\epsilon}\) of T leads to a regularized initial-value problem. The perturbation theory of nonlinear semigroups is used to obtain weak solutions of the problem as \(\epsilon\) goes to zero.
Reviewer: G.F.Webb

MSC:

35L45 Initial value problems for first-order hyperbolic systems
35J25 Boundary value problems for second-order elliptic equations
47H20 Semigroups of nonlinear operators
35D05 Existence of generalized solutions of PDE (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beale, Eigenfunction expansion for objects floating in an open sea, Comm. Pure Appl. Math. XXX pp 283– (1977) · Zbl 0336.76004
[2] Friedman, The initial value problem for the linearized equations of water waves, J. of Math. and Mechan. 17 (2) pp 107– (1967)
[3] Garipov, On the linear theory of gravity waver: the theorem of existence and uniqueness, Arch. rat. Mech. Anal. 24 pp 352– (1967) · Zbl 0149.45603
[4] Hanouzet, Espace de Sobolev avec poids, application au problème de Dirichlet dans un demi-espace, Rend. della sem. Math. Univ. di Padova 46 pp 227– (1971)
[5] Jami , A. Etude théorique et numérique de phénomènes transitoires en hydrodynamicque navale
[6] Kato , T. Perturbation theory for linear operators Springer Verlag 132 · Zbl 0148.12601
[7] Lau, The linearized equation of water waves, Indiana Univ. Math. J. 22 (3) pp 233– (1972) · Zbl 0228.35054
[8] Lions , J. L. Quelques méthodes de résolution de problèmes aux limites non linéaires 1969
[9] Lions, Problèmes aux limites non homogènes 1 (1968) · Zbl 0235.65074
[10] Licht , C. Etude de quelques modèles décrivant les vibrations d’une structure élastique dans la mer · Zbl 0574.73063
[11] Nedelec, Approximation des équations intégrales en mécanique et en physique (1977)
[12] Newman, The theory of ship Motion, Adv. in Appl. Mech. 18 pp 221– (1978)
[13] Sclavounos , P. 1983
[14] Tartar , L. Topics in non linear analysis 78 13
[15] Treves, Introduction to pseudodifferential and Fourier integral Operators 1 (1980)
[16] Wendland, On the integral equation method for the plane mixed, Math. Meth. Appl. Sci. 1 pp 265– (1979) · Zbl 0461.65082
[17] Wilcox , C. H. Scattering theory for the d’Alembert equation in exterior domains 1975 · Zbl 0299.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.