Morton, K. W. Generalised Galerkin methods for hyperbolic problems. (English) Zbl 0568.76007 Comput. Methods Appl. Mech. Eng. 52, 847-871 (1985). See the preview in Zbl 0546.76003. Cited in 26 Documents MSC: 76M99 Basic methods in fluid mechanics 76Bxx Incompressible inviscid fluids 86A05 Hydrology, hydrography, oceanography 86A10 Meteorology and atmospheric physics Keywords:time-accurate methods; unsteady; fixed mesh; Galerkin formulation; Petrov-Galerkin and Taylor-Galerkin methods; characteristic Galerkin methods; algorithm; ECG shock; modelling algorithm Citations:Zbl 0546.76003 Software:SHASTA PDF BibTeX XML Cite \textit{K. W. Morton}, Comput. Methods Appl. Mech. Eng. 52, 847--871 (1985; Zbl 0568.76007) Full Text: DOI OpenURL References: [1] Arakawa, A., A computational design for the long term integration of the equations of atmospheric motion, J. comput. phys., 1, 119-143, (1966) · Zbl 0147.44202 [2] Jespersen, D.C., Arakawa’s method is a finite element method, J. comput. phys., 16, 383-390, (1974) · Zbl 0291.76012 [3] Swartz, B.; Wendroff, B., Generalised finite difference schemes, Math. comput., 23, 37-50, (1969) · Zbl 0184.38502 [4] Morton, K.W., Initial-value problems by finite difference and other methods, (), 699-756 [5] Swartz, B.; Wendroff, B., The relation between the Galerkin and collocation methods using smooth splines, SIAM J. numer. anal, 11, 994-996, (1974) · Zbl 0288.65066 [6] Thomée, V.; Wendroff, B., Convergence estimates for Galerkin methods for variable coefficient initial-value problems, SIAM J. numer. anal., 11, 1059-1068, (1974) · Zbl 0292.65052 [7] Cullen, M.J.P.; Morton, K.W., Analysis of evolutionary error in finite element and other methods, J. comput. phys., 34, 245-268, (1980) · Zbl 0477.65064 [8] Morton, K.W.; Scotney, B.W., Petrov-Galerkin methods and diffusion-convection problems in 2D, () · Zbl 0617.76100 [9] Morton, K.W.; Parrott, A.K., Generalised Galerkin methods for first order hyperbolic equations, J. comput. phys., 36, 249-270, (1980) · Zbl 0458.65098 [10] Morton, K.W.; Stokes, A., Generalised Galerkin methods for hyperbolic equations, (), 421-431 · Zbl 0551.65076 [11] Donea, J., A Taylor-Galerkin method for convective transport problems, Internat. J. numer. meths. engrg, 20, 101-119, (1984) · Zbl 0524.65071 [12] Selmin, V.; Donea, J.; Quartapelle, L., Finite element methods for nonlinear advection, (), 817-845 · Zbl 0573.76005 [13] Courant, R.; Isaacson, E.; Rees, M., On the solution of non-linear hyperbolic differential equations by finite differences, Comm. pure appl. math., 5, 243-264, (1952) [14] Brebbia, C.A.; Smith, S., Solution of Navier-Stokes equations for transient incompressible flow, (), 4.205-4.230 [15] Ewing, R.E.; Russell, T.F., Multistep Galerkin methods along characteristics for convection-diffusion problems, (), 28-36 [16] Douglas, J.; Russell, T.F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. numer. anal., 19, 871-885, (1982) · Zbl 0492.65051 [17] Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. math., 38, 309-332, (1982) · Zbl 0505.76100 [18] Bercovier, M.; Pironneau, O.; Hasbani, Y.; Livne, E., Characteristics and finite element methods applied to the equation of fluids, (), 471-478 · Zbl 0504.76003 [19] Benqué, J.P.; Ronat, J., Quelques difficultes des modeles numerique en hydraulique, () · Zbl 0505.76035 [20] Morton, K.W., Shock capturing, Fitting and recovery, (), 77-93 [21] Morton, K.W., Generalised Galerkin methods for steady and unsteady problems, (), 1-32 · Zbl 0543.76118 [22] Warming, R.F.; Kutler, P.; Lomax, H., Second- and third-order non-centred difference schemes for non-linear hyperbolic equations, Aiaa, j., 11, 189, (1973) · Zbl 0268.76048 [23] Morton, K.W., Characteristic Galerkin methods for hyperbolic problems, (), 243-250 · Zbl 0552.76005 [24] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, (), 47-65 [25] van Leer, B., Towards the ultimate conservative difference scheme V: A second order sequal to Godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223 [26] Morton, K.W.; Sweby, P.K., A comparison of finite difference and characteristic Galerkin methods for shock modelling, () · Zbl 0589.76086 [27] Boris, J.P.; Book, D.L., Flux corrected transport. I SHASTA a fluid transport algorithm that works, J. comput. phys., 11, 38-69, (1973) · Zbl 0251.76004 [28] Engquist, B.; Osher, S., One sided difference equations for non-linear conservation laws, Math. comput., 36, 321-352, (1981) [29] Osher, S.; Soloman, S., Upwind difference schemes for hyperbolic systems of conservation laws, Math. comput., 38, 339-374, (1982) · Zbl 0483.65055 [30] Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. comput. phys., 43, 357-372, (1981) · Zbl 0474.65066 [31] Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. comput. phys., 1-31, (1978) · Zbl 0387.76063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.