Bordemann, Martin; Neumaier, Nikolai; Waldmann, Stefan; Weiß, Stefan Deformation quantization of surjective submersions and principal fibre bundles. (English) Zbl 1188.53104 J. Reine Angew. Math. 639, 1-38 (2010). Principle fibre bundles and surjective submersions are omnipresent in differential geometry. On the other hand, deformation quantization has great popularity in various applications in mathematical physics and involving many applications: in quantum theory of classical mechanical system, noncommutative space-times, etc. Having these applications in mind, in this paper, the authors establish a notion of deformation quantization of a surjective submersion which is specialized further to the case of principle bundles: The functions on the total space are deformed into a right module for the star product algebra of the functions on the base manifold. In the case of principle bundles, the invariance under the principal action is additionally required. The existence and uniqueness of such deformations are proved. The commutant within all differential operators on the total space is computed and gives a deformation of the algebra of vertical differential operators. The paper concludes by discussing some applications to noncommutative gauge field theories and phase space reduction of star products. Reviewer: Béchir Dali (Riyadh) Cited in 3 Documents MSC: 53D55 Deformation quantization, star products 46L65 Quantizations, deformations for selfadjoint operator algebras 53D50 Geometric quantization 55R10 Fiber bundles in algebraic topology Keywords:deformation quantization; star products; fiber bundles PDF BibTeX XML Cite \textit{M. Bordemann} et al., J. Reine Angew. Math. 639, 1--38 (2010; Zbl 1188.53104) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1016/0003-4916(78)90224-5 · Zbl 0377.53024 [2] Bordemann M., Math. Phys. Stud. 22 pp 45– (2000) [3] Bordemann M., Trav. Math. 16 pp 9– (2005) [4] DOI: 10.1007/BF00714403 · Zbl 0849.58035 [5] DOI: 10.1063/1.531779 · Zbl 0923.58024 [6] DOI: 10.1007/s002200050774 · Zbl 0961.53046 [7] DOI: 10.1007/BF02096884 · Zbl 0817.58003 [8] DOI: 10.1155/S1073792802108014 · Zbl 1031.53120 [9] DOI: 10.1023/A:1007661703158 · Zbl 0982.53073 [10] DOI: 10.1007/s002200200657 · Zbl 1036.53068 [11] DOI: 10.2140/pjm.2005.222.201 · Zbl 1111.53071 [12] DOI: 10.1023/B:MATH.0000027690.76935.f3 · Zbl 1059.53064 [13] DOI: 10.1007/s11005-004-0609-7 · Zbl 1065.53063 [14] DOI: 10.1016/j.aim.2006.03.010 · Zbl 1106.53060 [15] DOI: 10.2307/2001258 · Zbl 0850.70212 [16] DOI: 10.1007/s002200100433 · Zbl 0990.58008 [17] DOI: 10.1016/0021-8693(74)90066-0 · Zbl 0283.16016 [18] DOI: 10.1007/BF02104515 · Zbl 0847.53051 [19] DOI: 10.2307/1970484 · Zbl 0123.03101 [20] DOI: 10.1016/S0393-0440(98)00045-X · Zbl 1024.53057 [21] Hajac P. M., C. R. Math. Acad. Sci. Paris 336 (11) pp 925– (2003) [22] DOI: 10.1007/s002200050594 · Zbl 0977.53079 [23] DOI: 10.1007/s002200000308 · Zbl 1031.53119 [24] DOI: 10.1007/s100520000487 · Zbl 1099.81525 [25] DOI: 10.1007/s100520000380 [26] DOI: 10.1016/S0550-3213(00)00363-1 · Zbl 0984.81167 [27] DOI: 10.1016/S0550-3213(01)00191-2 · Zbl 0983.81054 [28] DOI: 10.1023/A:1021244731214 · Zbl 1036.53070 [29] DOI: 10.1023/B:MATH.0000027508.00421.bf · Zbl 1058.53065 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.