×

zbMATH — the first resource for mathematics

Estimating crude cumulative incidences through multinomial logit regression on discrete cause-specific hazards. (English) Zbl 1453.62025
Summary: In the presence of competing risks, the estimation of crude cumulative incidence, i.e. the probability of a specific failure as time progresses, has received much attention in the methodological literature. It is possible to estimate crude cumulative incidence starting from models defined on cause-specific hazards or to adopt regression strategies modeling directly the quantity of interest. A generalized linear model based on discrete cause-specific hazard is used to obtain the crude cumulative incidence and its asymptotic variance. The model allows inference both on cause-specific hazard and on crude cumulative incidence in the presence of time dependent effects. Standard software can be used to compute all quantities of interest. A trial of chemoprevention of leukoplakia is considered for illustrative purposes, where different patterns of risk are suspected for the different causes of treatment failure.

MSC:
62-08 Computational methods for problems pertaining to statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aalen, O.O., A linear regression model for the analysis of life times, Stat. med., 8, 907-925, (1989)
[2] Aitkin, M.; Francis, B.; Hinde, J., ()
[3] Andersen, P.K.; Borgan, O.; Gill, R.D.; Keiding, N., Statistical models based on counting processes, (1993), Springer · Zbl 0769.62061
[4] Andersen, P.K.; Abildstrom, S.Z.; Rosthj, S., Competing risks as a multi-state model, Stat. methods med. res., 11, 2, 203-215, (2002) · Zbl 1121.62567
[5] Begg, C.B.; Gray, R., Calculation of polychotomous logistic regression parameters using individualized regressions, Biometrika, 71, 1, 11-18, (1984) · Zbl 0533.62089
[6] Biganzoli, E.M.; Boracchi, P.; Ambrogi, F.; Marubini, E., Artificial neural network for the joint modelling of discrete cause-specific hazards, Artif. intell. med., 37, 2, 119-130, (2006)
[7] Biganzoli, E.M.; Boracchi, P.; Marubini, E., A general framework for neural network models oon censored survival data, Neural netw., 15, 209-218, (2002)
[8] Boracchi, P.; Biganzoli, E.; Marubini, E., Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients, Comput. stat. data anal., 42, 24362, (2003) · Zbl 1429.62498
[9] Böhning, D., Multinomial logistic regression algorithm, Ann. inst. statist. math., 44, 1, 197-200, (1992) · Zbl 0763.62038
[10] Brown, C.C., On the use of indicator variables for studying the time-dependence of parameters in a response-time model, Biometrics, 31, 4, 863-872, (1975) · Zbl 0342.62070
[11] Cheng, S.C.; Fine, J.P.; Wei, L.J., Prediction of cumulative incidence function under the proportional hazards model, Biometrics, 54, 1, 219-228, (1998) · Zbl 1058.62593
[12] Cheng, S.C.; Wei, L.J.; Ying, Z., Analysis of transformation models with censored data, Biometrika, 83, 835-846, (1995) · Zbl 0861.62071
[13] Chiesa, F.; Tradati, N.; Grigolato, R.; Boracchi, P.; Biganzoli, E.; Crose, N.; Cavadini, E.; Formelli, F.; Costa, L.; Giardini, R.; Zurrida, S.; Costa, A.; De Palo, G.; Veronesi, U., Randomized trial of fenretinide (4-HPR) to prevent recurrences, new localizations and carcinomas in patients operated on for oral leukoplakia: long-term results, Int. J. cancer, 115, 4, 625-629, (2005)
[14] Choudhury, J.B., Non-parametric confidence interval estimation for competing risks analysis: application to contraceptive data, Stat. med., 21, 8, 1129-1144, (2002)
[15] Doksum, K.A.; Gasko, M., On a correspondence between models in binary regression analysis and in survival analysis, Int. stat. rev., 58, 3, 243-252, (1990) · Zbl 0713.62073
[16] Efron, B., Logistic regression, survival analysis, and the kaplan – meyer curve, J. am. stat. assoc., 83, 414-425, (1988) · Zbl 0644.62100
[17] Jeong, J.H.; Fine, J.P., Parametric regression on cumulative incidence function, Biostatistics, 8, 2, 184-196, (2007) · Zbl 1213.62169
[18] Fahrmeir, L.; Tutz, G., Multivariate statistical modelling based on generalized linear models, (1994), Springer-Verlag · Zbl 0809.62064
[19] Fahrmeir, L.; Wagenpfeil, S., Smoothing hazard functions and time-varying effects in discrete duration and competing risks models, J. am. stat. assoc., 91, 436, 1584-1594, (1996) · Zbl 0883.62098
[20] Fine, J.P., Analysing competing risks data with transformation models, J. R. statist. soc. B, 61, 817-830, (1999) · Zbl 1156.62354
[21] Fine, J.P.; Gray, R.J., A proportional hazards model for the subdistribution of a competing risk, J. am. stat. assoc., 94, 496-509, (1999) · Zbl 0999.62077
[22] Formelli, F.; Carsana, R.; Costa, A.; Buranelli, F.; Campa, T.; Dossena, G.; Magni, A.; Pizzichetta, M., Plasma retinol level reduction by the synthetic retinoid fenretinide: A one year follow-up study of breast cancer patients, Cancer. res., 49, 21, 6149-6152, (1989)
[23] Gray, R.J., A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. statist., 16, 3, 1141-1154, (1998) · Zbl 0649.62040
[24] Gray, R.J., 2004. cmprsk: Subdistribution Analysis of Competing Risks. R package version 2.1-5. http://www.r-project.org, http://biowww.dfci.harvard.edu/gray
[25] Grilli, L., The random-effects proportional hazards model with grouped survival data: A comparison between the grouped continuous and continuation ratio versions, J. R. statist. soc. A., 168, 1, 83-94, (2005) · Zbl 1099.62111
[26] Guo, S.W.; Lin, D.Y., Regression analysis of multivariate grouped survival data, Biometrics, 50, 632-639, (1994) · Zbl 0825.62780
[27] Harrell, F.E., Regression modeling strategies, (2001), Springer-Verlag · Zbl 0982.62063
[28] Harrell, Jr. F.E., 2007a. Design: Design Package. \(R\) package version 2.1-1. http://biostat.mc.vanderbilt.edu/s/Design, http://biostat.mc.vanderbilt.edu/rms
[29] Harrell, Jr. F.E., 2007b. Hmisc: Harrell Miscellaneous. \(R\) package version 3.4-3. http://biostat.mc.vanderbilt.edu/s/Hmisc with contributions from many other users
[30] Hess, K.R., Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions, Stat. med., 13, 1045-1062, (1994)
[31] Larson, M.G., Covariate analysis of competing-risks data with log-linear models, Biometrics, 40, 459-469, (1984)
[32] Latouche, A.; Boisson, V.; Chevret, S.; Porcher, R., Misspecified regression model for the subdistribution hazard of a competing risk, Stat. med., 26, 5, 965-974, (2007)
[33] Kay, R., Treatment effects in competing-risks analysis of prostate cancer data, Biometrics, 42, 203-211, (1986)
[34] Kalbfleisch, J.D.; Prentice, R.L., The statistical analysis of failure time data, (2002), Wiley · Zbl 1012.62104
[35] Keiding, N.; Andersen, P.K., Nonparametric estimation of transition intensities and transition probabilities: A case study of a two-state Markov process, Appl. statist., 38, 319-329, (1989) · Zbl 0707.62180
[36] Klein, J.P., Modelling competing risks in cancer studies, Stat. med., 25, 6, 1015-1034, (2006)
[37] Klein, J.P.; Andersen, P.K., Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function, Biometrics, 61, 223-229, (2005) · Zbl 1077.62081
[38] Kramar, A.; Pejovic, M.H.; Chassagne, D., A method of analysis taking into account competing events: application to the study of digestive complications following irradiation for cervical cancer, Stat. med., 6, 785-794, (1987)
[39] Marubini, E.; Valsecchi, M.G., Analysing survival data from clinical trials and observational studies, (1995), John Wiley & Sons Chichester · Zbl 0837.62090
[40] McCullagh, P.; Nelder, J.A., Generalized linear models, (1989), Chapman and Hall London · Zbl 0744.62098
[41] Putter, H.; Fiocco, M.; Geskus, R.B., Tutorial in biostatistics: competing risks and multi-state models, Stat. med., 26, 2389-2430, (2007)
[42] R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org
[43] Rosthøj, S.; Andersen, P.K.; Abildstrom, S.Z., SAS macros for estimation of the cumulative incidence functions based on a Cox regression model for competing risks survival data, Comput. methods. programs. biomed., 74, 1, 69-75, (2004)
[44] Scheike, T.H.; Zhang, M.J.; Gerds, T.A., Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 1, 205-220, (2008) · Zbl 1437.62602
[45] Shen, Y.; Cheng, S.C., Confidence bands for cumulative incidence curves under the additive risk model, Biometrics, 55, 1093-1100, (1999) · Zbl 1059.62711
[46] Skrondal, A.; Rabe-Hesketh, S., Multilevel logistic regression for polytomous data and rankings, Psychometrika, 68, 2, 267-287, (2003) · Zbl 1306.62503
[47] Therneau, T.; Grambsch, P., Modeling survival data: extending the Cox model, (2000), Springer · Zbl 0958.62094
[48] Tutz, G., Competing risks models in discrete time with nominal or ordinal categories of response, Qual. quant., 29, 405-420, (1995)
[49] Venables, W.N.; Ripley, B.D., Modern applied statistics with S, (2002), Springer · Zbl 1006.62003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.