×

Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography. (English) Zbl 1453.62185

Summary: Ensemble methodology, which builds a classification model by integrating multiple classifiers, can be used for improving prediction performance. Researchers from various disciplines such as statistics, pattern recognition, and machine learning have seriously explored the use of ensemble methodology. This paper presents an updated survey of ensemble methods in classification tasks, while introducing a new taxonomy for characterizing them. The new taxonomy, presented from the algorithm designer’s point of view, is based on five dimensions: inducer, combiner, diversity, size, and members’ dependency. We also propose several selection criteria, presented from the practitioner’s point of view, for choosing the most suitable ensemble method.

MSC:

62-08 Computational methods for problems pertaining to statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abeel, Thomas; Van de Peer, Yves; Saeys, Yvan, Java-ML: A machine learning library, Journal of machine learning research, 10, 931-934, (2009) · Zbl 1235.68121
[2] Adem, J.; Gochet, W., Aggregating classifiers with mathematical programming, Computational statistics and data analysis, 47, 4, 791-807, (2004) · Zbl 1429.62230
[3] Ahn, H.; Moon, H.; Fazzari, M.J.; Lim, Noha; James, J. Chen; Ralph, L. Kodell, Classification by ensembles from random partitions of high-dimensional data, Computational statistics and data analysis, 51, 6166-6179, (2007) · Zbl 1203.62115
[4] Ali, K.M.; Pazzani, M.J., Error reduction through learning multiple descriptions, Machine learning, 24, 3, 173-202, (1996)
[5] Altincay, H., Decision trees using model ensemble-based nodes pattern, Recognition, 40, 3540-3551, (2007) · Zbl 1129.68057
[6] Anand, R.; Methrotra, K.; Mohan, C.K.; Ranka, S., Efficient classification for multiclass problems using modular neural networks, IEEE transactions on neural networks, 6, 1, 117-125, (1995)
[7] Arbel, R.; Rokach, L., Classifier evaluation under limited resources, Pattern recognition letters, 27, 14, 1619-1631, (2006)
[8] Archer, K.J.; Kimes, R.V., Empirical characterization of random forest variable importance measures, Computational statistics and data analysis, 52, 2249-2260, (2008) · Zbl 1452.62027
[9] Averbuch, M.; Karson, T.; Ben-Ami, B.; Maimon, O.; Rokach, L., Context-sensitive medical information retrieval, (), 282-286
[10] Banfield, Robert E.; Hall, Lawrence O.; Bowyer, Kevin W.; Kegelmeyer, W.P., A comparison of decision tree ensemble creation techniques, IEEE transactions on pattern analysis and machine intelligence, 29, 1, 173-180, (2007)
[11] Banfield, R., OpenDT. http://opendt.sourceforge.net/, 2005
[12] Bao, Y.; Ishii, N., Combining multiple K-nearest neighbor classifiers for text classification by reducts, (), 340-347 · Zbl 1024.68545
[13] Bartlett, P.; Shawe-Taylor, J., Generalization performance of support vector machines and other pattern classifiers, ()
[14] Bauer, E.; Kohavi, R., An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine learning, 35, 1-38, (1999)
[15] Bay, S., Nearest neighbor classification from multiple feature subsets, Intelligent data analysis, 3, 3, 191-209, (1999)
[16] Bennett, Kristin P.; Demiriz, Ayhan; Maclin, Richard, Exploiting unlabeled data in ensemble methods, (), 289-296
[17] Brazdil, P.; Gama, J.; Henery, R., Characterizing the applicability of classification algorithms using meta level learning, (), 83-102
[18] Breiman, L., Bagging predictors, Machine learning, 24, 2, 123-140, (1996) · Zbl 0858.68080
[19] Breiman, L., Arcing classifiers, Annals of statistics, 26, 3, 801-849, (1998) · Zbl 0934.62064
[20] Breiman, L., 1999. Pasting small votes for classification in large databases and on-line, Machine Learning, 36, pp. 85-103
[21] Breiman, L., Random forests, Machine learning, 45, 5-32, (2001) · Zbl 1007.68152
[22] Brodley, C.E., Recursive automatic bias selection for classifier construction, Machine learning, 20, 63-94, (1995)
[23] Brown, G.; Wyatt, J.L., Negative correlation learning and the ambiguity family of ensemble methods, Multiple classifier systems, 266-275, (2003) · Zbl 1040.68596
[24] Brown, G.; Wyatt, J.; Harris, R.; Yao, X., Diversity creation methods: A survey and categorisation, Information fusion, 6, 1, 5-20, (2005)
[25] Bruzzone, L.; Cossu, R.; Vernazza, G., Detection of land-cover transitions by combining multidate classifiers, Pattern recognition letters, 25, 13, 1491-1500, (2004)
[26] Bryll, R.; Gutierrez-Osuna, R.; Quek, F., Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern recognition, 36, 1291-1302, (2003) · Zbl 1033.68092
[27] Buntine, W., Graphical models for discovering knowledge, (), 59-82
[28] Buttrey, S.E.; Karo, C., Using k-nearest-neighbor classification in the leaves of a tree, Computational statistics and data analysis, 40, 27-37, (2002) · Zbl 0990.62050
[29] Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A., 2004. Ensemble selection from libraries of models, In: Twenty-first International Conference on Machine Learning, July 04-08, Banff, Alberta, Canada
[30] Chan, P.K., Stolfo, S.J., A comparative evaluation of voting and meta-learning on partitioned data. In: Proc. 12th Intl. Conf. On Machine Learning ICML-95, 1995
[31] Chan, P.K.; Stolfo, S.J, On the accuracy of meta-learning for scalable data mining, Journal of intelligent information systems, 8, 5-28, (1997)
[32] Chawla, N.V.; Hall, L.O.; Bowyer, K.W.; Kegelmeyer, W.P., Learning ensembles from bites: A scalable and accurate approach, Journal of machine learning research, 5, 421-451, (2004)
[33] Christensen, S.W.; Sinclair, I.; Reed, P.A.S., Designing committees of models through deliberate weighting of data points, The journal of machine learning research, 4, 1, 39-66, (2004) · Zbl 1085.68619
[34] Christmann, A.; Steinwart, I.; Hubert, M., Robust learning from bites for data mining, Computational statistics and data analysis, 52, 347-361, (2007) · Zbl 1452.62042
[35] Clark, P.; Boswell, R., Rule induction with CN2: some recent improvements, (), 151-163
[36] Cohen, S.; Rokach, L.; Maimon, O., Decision tree input space decomposition with grouped gain-ratio, Information sciences, 177, 17, 3592-3612, (2007)
[37] Croux, C.; Joossens, K.; Lemmens, A., Trimmed bagging, Computational statistics and data analysis, 52, 362-368, (2007) · Zbl 1452.62047
[38] Cunningham, P.; Carney, J., Diversity versus quality in classification ensembles based on feature selection, (), 109-116
[39] Dasarathy, B.V.; Sheela, B.V., Composite classifier system design: concepts and methodology, Proceedings of the IEEE, 67, 5, 708-713, (1979)
[40] Demsar, J., Zupan, B., Leban, G., 2004. Orange: From experimental machine learning to interactive data mining, White Paper (www.ailab.si/orange), Faculty of Computer and Information Science, University of Ljubljana
[41] Denison, D.G.T.; Adams, N.M.; Holmes, C.C.; Hand, D.J., Bayesian partition modelling, Computational statistics and data analysis, 38, 475-485, (2002) · Zbl 1040.62015
[42] Derbeko, P.; El-Yaniv, R.; Meir, R., Variance optimized bagging, () · Zbl 1014.68909
[43] Džeroski, S.; Ženko, B., Is combining classifiers with stacking better than selecting the best one?, Machine learning, 54, 3, 255-273, (2004) · Zbl 1101.68077
[44] Dietterich, T.G.; Ghulum, Bakiri., Solving multiclass learning problems via error-correcting output codes, Journal of artificial intelligence research, 2, 263-286, (1995) · Zbl 0900.68358
[45] Dietterich, T.G., An experimental comparison of three methods for constructing ensembles of decision trees: bagging, Boosting and randomization, 40, 2, 139-157, (2000)
[46] Dietterich, T., Ensemble methods in machine learning, (), 1-15
[47] Dimitrakakis, C.; Bengio, S., Online adaptive policies for ensemble classifiers, Neurocomputing, 64, 211-221, (2005)
[48] Domingos, P., Using partitioning to speed up specific-to-general rule induction, (), 29-34
[49] Drucker, H., Effect of pruning and early stopping on performance of a boosting ensemble, Computational statistics and data analysis, 38, 393-406, (2002) · Zbl 1072.62641
[50] Duin, R.P.W., 2002. The combining classifier: To train or not to train? In: Proc. 16th International Conference on Pattern Recognition, ICPR’02, Canada, pp. 765-770
[51] Elovici, Y.; Shapira, B.; Kantor, P., Using the information structure model to compare profile-based information filtering systems, Information retrieval journal, 6, 1, 75-97, (2002)
[52] Elovici, Y.; Shapira, B.; Kantor, P., A decision theoretic approach to combining information filters: analytical and empirical evaluation, Journal of the American society for information science and technology (JASIST), 57, 3, 306-320, (2006)
[53] Frank, E.; Hall, M.; Holmes, G.; Kirkby, R.; Pfahringer, B., WEKA — A machine learning workbench for data mining, (), 1305-1314
[54] Freund, Yoav, Mason, Llew, 1999. The alternating decision tree algorithm. In: Proceedings of the 16th International Conference on Machine Learning. pp. 124-133
[55] Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 325-332
[56] Friedman, J.H., Multivariate adaptive regression splines, The annual of statistics, 19, 1-141, (1991) · Zbl 0765.62064
[57] Friedman, J.; Hastie, T.; Tibshirani, R., Additive logistic regression: A statistical view of boosting, Annals of statistics, 28, 2, 337-407, (2000) · Zbl 1106.62323
[58] Friedman, J.H., Stochastic gradient boosting, Computational statistics and data analysis, 38, 4, 367-378, (2002) · Zbl 1072.65502
[59] Gama, J., A linear-Bayes classifier, (), 269-279 · Zbl 1043.68659
[60] Gams, M., New measurements highlight the importance of redundant knowledge, ()
[61] Gey, S.; Poggi, J.-M., Boosting and instability for regression trees, Computational statistics and data analysis, 50, 533-550, (2006) · Zbl 1431.62155
[62] Gunter, S.; Bunke, H., Feature selection algorithms for the generation of multiple classifier systems, Pattern recognition letters, 25, 11, 1323-1336, (2004)
[63] Hansen, J., 2000. Combining predictors. In: Meta Machine Learning Methods and Bias, Variance & Ambiguity Decompositions. Ph.D. dissertation. Aurhus University
[64] Hansen, L.K.; Salamon, P., Neural network ensembles, IEEE transactions on pattern analysis and machine intelligence, 12, 10, 993-1001, (1990)
[65] Ho, T.K., The random subspace method for constructing decision forests, IEEE transactions on pattern analysis and machine intelligence, 20, 8, 832-844, (1998)
[66] Ho, T.K., Data complexity analysis for classifier combination, (), 53-67 · Zbl 0980.68638
[67] Ho, T.K., Multiple classifier combination: lessons and next steps, (), 171-198 · Zbl 1012.68167
[68] Ho, T.K., 1998. Nearest neighbors in random subspaces, In: Proc. of the Second International Workshop on Statistical Techniques in Pattern Recognition, Sydney, Australia, August 11-13, pp. 640-648
[69] Ho, T.K.; Hull, J.J.; Srihari, S.N., Decision combination in multiple classifier systems, Pami, 16, 1, 66-75, (1994)
[70] Hothorn, T.; Lausen, B., Bundling classifiers by bagging trees, Computational statistics and data analysis, 49, 1068-1078, (2005) · Zbl 1429.62246
[71] Hu, X., 2001. Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications. In: ICDM01. pp. 233-240
[72] Hu, Q.H.; Yu, D.R.; Wang, M.Y., Constructing rough decision forests, (), 147-156
[73] Hu, Q.; Yu, D.; Xie, Z.; Li, X., EROS: ensemble rough subspaces, Pattern recognition, 40, 3728-3739, (2007) · Zbl 1129.68074
[74] Huang, Y.S.; Suen, C.Y., A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE transactions on pattern analysis and machine intelligence, 17, 90-94, (1995)
[75] Ingo, Mierswa, Michael, Wurst, Ralf, Klinkenberg, Martin, Scholz, Timm, Euler, 2006. YALE: Rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06)
[76] Islam, M.M.; Yao, X.; Murase, K., A constructive algorithm for training cooperative neural network ensembles, IEEE transactions on neural networks, 14, 4, 820-834, (2003)
[77] Jacobs, R.; Jordan, M.; Nowlan, S.; Hinton, G., Adaptive mixtures of local experts, Neural computation, 3, 79-87, (1991)
[78] Jordan, M.I.; Jacobs, R.A., Hierarchical mixtures of experts and the EM algorithm, Neural computation, 6, 181-214, (1994)
[79] Kamel, M.S.; Wanas, N.M., Data dependence in combining classifiers, (), 1-14 · Zbl 1040.68660
[80] Kang, H.; Lee, S., Combination of multiple classifiers by minimizing the upper bound of Bayes error rate for unconstrained handwritten numeral recognition, International journal of pattern recognition and artificial intelligence, 19, 3, 395-413, (2005)
[81] Kim, Y.; Koo, J.-Y., Inverse boosting for monotone regression functions, Computational statistics and data analysis, 49, 757-770, (2005) · Zbl 1429.62142
[82] Kohavi, R., 1996. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. pp. 114-119
[83] Kolen, J.F.; Pollack, J.B., Back propagation is sensitive to initial conditions, (), 860-867
[84] Krogh, A.; Vedelsby, J., Neural network ensembles, cross validation and active learning, (), 231-238
[85] Kuncheva, L., Combining pattern classifiers, (2005), Wiley Press
[86] Kuncheva, L.I., Diversity in multiple classifier systems (editorial), Information fusion, 6, 1, 3-4, (2005)
[87] Kuncheva, L.; Whitaker, C., Measures of diversity in classifier ensembles and their relationship with ensemble accuracy, Machine learning, 51, 181-207, (2003) · Zbl 1027.68113
[88] Kusiak, A., Decomposition in data mining: an industrial case study, IEEE transactions on electronics packaging manufacturing, 23, 4, 345-353, (2000)
[89] Lam, L., Classifier combinations: implementations and theoretical issues, (), 78-86
[90] Langdon, W.B.; Barrett, S.J.; Buxton, B.F., Combining decision trees and neural networks for drug discovery, (), 60-70 · Zbl 1077.68589
[91] Leigh, W.; Purvis, R.; Ragusa, J.M., Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks, and genetic algorithm: A case study in romantic decision support, Decision support systems, 32, 4, 361-377, (2002)
[92] Li, Jing; Allinson, Nigel; Tao, Dacheng; Li, Xuelong, Multitraining support vector machine for image retrieval, IEEE transactions on image processing, 15, 11, 3597-3601, (2006)
[93] Liao, Y.; Moody, J., Constructing heterogeneous committees via input feature grouping, ()
[94] Lin, H.; Kao, Y.; Yang, F.; Wang, P., Content-based image retrieval trained by adaboost for mobile application, International journal of pattern recognition and artificial intelligence, 20, 4, 525-541, (2006)
[95] Lin, L.; Wang, X.; Yeung, D., Combining multiple classifiers based on a statistical method for handwritten Chinese character recognition, International journal of pattern recognition and artificial intelligence, 19, 8, 1027-1040, (2005)
[96] Liu, H.; Mandvikar, A.; Mody, J., An empirical study of building compact ensembles, (), 622-627
[97] Liu, C., Classifier combination based on confidence transformation, Pattern recognition, 38, 11-28, (2005) · Zbl 1101.68821
[98] Lu, B.L.; Ito, M., Task decomposition and module combination based on class relations: A modular neural network for pattern classification, IEEE transactions on neural networks, 10, 5, 1244-1256, (1999)
[99] Maimon, O.; Rokach, L., Improving supervised learning by feature decomposition, (), 178-196 · Zbl 1044.68724
[100] Maimon, O.; Rokach, L., ()
[101] Maimon, O.; Rokach, L., Data mining by attribute decomposition with semiconductors manufacturing case study, (), 311-336
[102] Mangiameli, P.; West, D.; Rampal, R., Model selection for medical diagnosis decision support systems, Decision support systems, 36, 3, 247-259, (2004)
[103] Margineantu, D., Dietterich, T., 1997. Pruning adaptive boosting. In: Proc. Fourteenth Intl. Conf. Machine Learning. pp. 211-218
[104] Melville, Prem, Mooney, Raymond J., 2003. Constructing diverse classifier ensembles using artificial training examples, In: IJCAI 2003. pp. 505-512
[105] Menahem, E.; Shabtai, A.; Rokach, L.; Elovici, Y., Improving malware detection by applying multi-inducer ensemble, Computational statistics and data analysis, 53, 4, 1483-1494, (2009) · Zbl 1452.62098
[106] Menahem, E., Rokach, L., Elovici, Y., Troika — An improved stacking schema for classification tasks, Information Sciences (in press)
[107] Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, M.; Lengauer, T., Ensemble methods for classification in cheminformatics, Journal of chemical information and modeling, 44, 6, 1971-1978, (2004)
[108] Merler, S.; Caprile, B.; Furlanello, C., Parallelizing adaboost by weights dynamics, Computational statistics and data analysis, 51, 2487-2498, (2007) · Zbl 1161.62377
[109] Merz, C.J., Using correspondence analysis to combine classifier, Machine learning, 36, 1-2, 33-58, (1999)
[110] Michalski, R.S.; Tecuci, G., ()
[111] Mitchell, T., Machine learning, (1997), McGraw-Hill · Zbl 0913.68167
[112] Moskovitch, R.; Elovici, Y.; Rokach, L., Detection of unknown computer worms based on behavioral classification of the host, Computational statistics and data analysis, 52, 9, 4544-4566, (2008) · Zbl 1452.62102
[113] Nowlan, S.J.; Hinton, G.E., Evaluation of adaptive mixtures of competing experts, (), 774-780
[114] Opitz, D., Feature selection for ensembles, (), 379-384
[115] Opitz, D.; Maclin, R., Popular ensemble methods: an empirical study, Journal of artificial research, 11, 169-198, (1999) · Zbl 0924.68159
[116] Opitz, D.; Shavlik, J., Generating accurate and diverse members of a neural-network ensemble, (), 535-541
[117] Parmanto, B.; Munro, P.W.; Doyle, H.R., Improving committee diagnosis with resampling techniques, (), 882-888
[118] Partridge, D.; Yates, W.B., Engineering multiversion neural-net systems, Neural computation, 8, 4, 869-893, (1996)
[119] Phama, T.; Smeuldersb, A., Quadratic boosting, Pattern recognition, 41, 331-341, (2008)
[120] Polikar, R., Ensemble based systems in decision making, IEEE circuits and systems magazine, 6, 3, 21-45, (2006)
[121] Prodromidis, A.L., Stolfo, S.J., Chan, P.K., 1999. Effective and efficient pruning of metaclassifiers in a distributed Data Mining system. Technical report CUCS-017-99, Columbia Univ
[122] Provost, F.J., Kolluri, V., 1997. A survey of methods for scaling up inductive learning algorithms. In: Proc. 3rd International Conference on Knowledge Discovery and Data Mining
[123] Quinlan, J.R., 1996. Bagging, Boosting, and C4.5. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence. pp. 725-730
[124] Ricco Rakotomalala, 2005. TANAGRA: A free software for research and academic purposes. In: Proceedings of EGC’2005, RNTI-E-3, vol. 2. pp. 697-702
[125] R Development Core Team, 2004. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3. http://cran.r-project.org/, 2004
[126] Ridgeway, G., Looking for lumps: boosting and bagging for density estimation, Computational statistics and data analysis, 38, 379-392, (2002) · Zbl 1072.62560
[127] Rokach, L., Genetic algorithm-based feature set partitioning for classification problems, Pattern recognition, 41, 5, 1676-1700, (2008) · Zbl 1140.68476
[128] Rokach, L., Mining manufacturing data using genetic algorithm-based feature set decomposition, International journal of intelligent systems technologies and applications, 4, 1, 57-78, (2008)
[129] Rokach, L.; Maimon, O., Data mining for improving the quality of manufacturing: A feature set decomposition approach, Journal of intelligent manufacturing, 17, 3, 285-299, (2006)
[130] Rokach, L., Decomposition methodology for classification tasks — a meta decomposer framework, Pattern analysis and applications, 9, 257-271, (2006)
[131] Rokach, L.; Maimon, O., Clustering methods, (), 321-352
[132] Rokach, L., Collective-agreement-based pruning of ensembles, Computational statistics and data analysis, 53, 4, 1015-1026, (2009) · Zbl 1452.62118
[133] Rokach, L.; Mainon, O., Theory and applications of attribute decomposition, (), 473-480
[134] Rokach, L.; Arbel, R.; Maimon, O., Selective voting — getting more for less in sensor fusion, International journal of pattern recognition and artificial intelligence, 20, 3, 329-350, (2006)
[135] Rokach, L.; Chizi, B.; Maimon, O., A methodology for improving the performance of non-ranker feature selection filters, International journal of pattern recognition and artificial intelligence, 21, 5, 809-830, (2007)
[136] Rokach, L.; Maimon, O., Feature set decomposition for decision trees, Journal of intelligent data analysis, 9, 2, 131-158, (2005)
[137] Rokach, L.; Maimon, O.; Arad, O., Improving supervised learning by sample decomposition, International journal of computational intelligence and applications, 5, 1, 37-54, (2005)
[138] Rokach, L.; Maimon, O.; Lavi, I., Space decomposition in data mining: A clustering approach, (), 24-31 · Zbl 1070.68560
[139] Rokach, L.; Averbuch, M.; Maimon, O., Information retrieval system for medical narrative reports, (), 217-228
[140] Rokach, L.; Romano, R.; Maimon, O., Negation recognition in medical narrative reports, Information retrieval, 11, 6, 499-538, (2008)
[141] Rosen, B.E., Ensemble learning using decorrelated neural networks, Connection science, 8, 3, 373-384, (1996)
[142] Rudin, C.; Daubechies, I.; Schapire, R.E., The dynamics of adaboost: cyclic behavior and convergence of margins, Journal of machine learning research, 5, 1557-1595, (2004) · Zbl 1222.68293
[143] Schaffer, C., Selecting a classification method by cross-validation, Machine learning, 13, 1, 135-143, (1993)
[144] Schapire, R.E., The strength of weak learnability, Machine learning, 5, 2, 197-227, (1990)
[145] Schclar, A.; Rokach, L., Random projection ensemble classifiers, (), 309-316
[146] Schclar, A., Rokach, L., Meisels, A., 2009. Ensemble methods for improving the performance of neighborhood-based collaborative filtering. In: Proc. ACM RecSys (in press)
[147] Seewald, A.K., Fürnkranz, J., 2001. Grading classifiers, Austrian Research Institute for Artificial Intelligence
[148] Seewald, A.K., How to make stacking better and faster while also taking care of an unknown weakness, (), 554-561
[149] Sexton, J.; Laake, P., Logitboost with errors-in-variables, Computational statistics and data analysis, 52, 2549-2559, (2008) · Zbl 1452.62293
[150] Sharkey, A., On combining artificial neural nets, Connection science, 8, 299-313, (1996)
[151] Sharkey, A.; Sharkey, N., Combining diverse neural networks, The knowledge engineering review, 12, 3, 231-247, (1997)
[152] Sharkey, A., Multi-net systems, (), 1-30 · Zbl 0927.68080
[153] Sharkey, A.J.C., Types of multinet system, (), 108-117 · Zbl 1047.68929
[154] Shilen, S., Multiple binary tree classifiers, Pattern recognition, 23, 7, 757-763, (1990)
[155] Skurichina, M.; Duin, R.P.W., Bagging, boosting and the random subspace method for linear classifiers, Pattern analysis and applications, 5, 2, 121-135, (2002) · Zbl 1024.68092
[156] Sohn, S.Y., Choi, H., 2001. Ensemble based on Data Envelopment Analysis. ECML Meta Learning Workshop, September 4
[157] Sohna, S.Y.; Shinb, H.W., Experimental study for the comparison of classifier combination methods, Pattern recognition, 40, 33-40, (2007) · Zbl 1103.68785
[158] Sivalingam, D.; Pandian, N.; Ben-Arie, J., Minimal classification method with error-correcting codes for multiclass recognition, International journal of pattern recognition and artificial intelligence, 19, 5, 663-680, (2005)
[159] Sun, Y.; Todorovic, S.; Li, L., Reducing the overfitting of adaboost by controlling its data distribution skewness, International journal of pattern recognition and artificial intelligence, 20, 7, 1093-1116, (2006)
[160] Tan, A.C.; Gilbert, D.; Deville, Y., Multi-class protein fold classification using a new ensemble machine learning approach, Genome informatics, 14, 206-217, (2003)
[161] Tao, Dacheng; Tang, Xiaoou; Li, Xuelong; Wu, Xindong, Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval, IEEE transactions on pattern analysis and machine intelligence, 28, 7, 1088-1099, (2006)
[162] Tao, Dacheng; Li, Xuelong; Maybank, Stephen J., Negative samples analysis in relevance feedback, IEEE transactions on knowledge and data engineering, 19, 4, 568-580, (2007)
[163] Tao, Dacheng, Tang, Xiaoou, 2004. SVM-based relevance feedback using random subspace method. In: IEEE International Conference on Multimedia and Expo, pp. 647-652
[164] Towell, G.; Shavlik, J., Knowledge-based artificial neural networks, Artificial intelligence, 70, 119-165, (1994) · Zbl 0938.68774
[165] Tsao, C.A.; Chang, Y.I., A stochastic approximation view of boosting, Computational statistics and data analysis, 52, 1, 325-344, (2007) · Zbl 1452.62134
[166] Tsymbal, A.; Puuronen, S., Ensemble feature selection with the simple Bayesian classification in medical diagnostics, (), 225-230
[167] Tsymbal, A.; Pechenizkiy, M.; Cunningham, P., Diversity in search strategies for ensemble feature selection, Information fusion, 6, 1, 83-98, (2005)
[168] Tukey, J.W., Exploratory data analysis, (1977), Addison-Wesley Reading, MA · Zbl 0409.62003
[169] Tumer, K.; Ghosh, J., Error correlation and error reduction in ensemble classifiers, Combining artificial neural networks: ensemble approaches, Connection science, 8, 3-4, 385-404, (1996), (special issue)
[170] Tumer, K.; Ghosh, J., Robust order statistics based ensembles for distributed data mining, (), 185-210
[171] Tumer, K.; Oza, C.N., Input decimated ensembles, Pattern analysis and application, 6, 65-77, (2003) · Zbl 1035.68107
[172] Tutz, G., Binder, H., 2006. Boosting ridge regression. Computational Statistics and Data Analysis. Corrected Proof, Available online 22 December 2006, in press (doi:10.1016/j.csda.2006.11.041)
[173] Valentini, G.; Masulli, F., Ensembles of learning machines, (), 3-19 · Zbl 1028.68620
[174] Vilalta, R.; Giraud-Carrier, C.; Brazdil, P., Meta-learning, (), 731-748
[175] Wanas, Nayer M.; Dara, Rozita A.; Kamel, Mohamed S., Adaptive fusion and co-operative training for classifier ensembles, Pattern recognition, 39, 1781-1794, (2006) · Zbl 1096.68735
[176] Wang, W.; Jones, P.; Partridge, D., Diversity between neural networks and decision trees for building multiple classifier systems, (), 240-249
[177] Webb, G., Multiboosting: A technique for combining boosting and wagging, Machine learning, 40, 2, 159-196, (2000)
[178] Webb, G.; Zheng, Z., Multistrategy ensemble learning: reducing error by combining ensemble learning techniques, IEEE transactions on knowledge and data engineering, 16, (2004), No. 8:980-991
[179] Windeatt, T.; Ardeshir, G., An empirical comparison of pruning methods for ensemble classifiers, (), 208-217 · Zbl 1029.68927
[180] Woods, K.; Kegelmeyer, W.; Bowyer, K., Combination of multiple classifiers using local accuracy estimates, IEEE transactions on pattern analysis and machine intelligence, 19, 405-410, (1997)
[181] Wolpert, D.H., Stacked generalization, Neural networks, 5, 241-259, (1992)
[182] Wu, Q.X.; Bell, D.; McGinnity, M., Multi-knowledge for decision making, Journal knowledge and information systems, 7, 246-266, (2005)
[183] Xu, L.; Krzyzak, A.; Suen, C.Y., Methods of combining multiple classifiers and their application to handwriting recognition, IEEE transactions on SMC, 22, 418-435, (1992)
[184] Yates, W.; Partridge, D., Use of methodological diversity to improve neural network generalization, Neural computing and applications, 4, 2, 114-128, (1996)
[185] Zenobi, G., Cunningham, P., 2001. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Proceedings of the European Conference on Machine Learning · Zbl 1007.68564
[186] Zhang, C.X.; Zhang, J.S., A local boosting algorithm for solving classification problems, Computational statistics and data analysis, 52, 4, 1928-1941, (2008) · Zbl 1452.62478
[187] Zhang, C.X.; Zhang, J.S.; Zhang, G.Y., Using boosting to prune double-bagging ensembles, Computational statistics and data analysis, (2008) · Zbl 1452.62145
[188] Zhou, Z.H.; Tang, W., Selective ensemble of decision trees, (), 476-483 · Zbl 1026.68599
[189] Zhou, Z.H.; Wu, J.; Tang, W., Ensembling neural networks: many could be better than all, Artificial intelligence, 137, 239-263, (2002) · Zbl 0995.68077
[190] Zhou, Z.; Jiang, Y., Nec4.5: neural ensemble based C4.5, IEEE transactions on knowledge and data engineering, 16, 6, 770-773, (2004)
[191] Zhoua, J.; Pengb, H.; Suenc, C., Data-driven decomposition for multi-class classification, Pattern recognition, 41, 67-76, (2008)
[192] Zupan, B.; Bohanec, M.; Demsar, J.; Bratko, I., Feature transformation by function decomposition, IEEE intelligent systems & their applications, 13, 38-43, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.