McKenzie, Ross H. A. A gravitational lens produces an odd number of images. (English) Zbl 0569.53043 J. Math. Phys. 26, 1592-1596 (1985). Rigorous results are given to the effect that a transparent gravitational lens produces an odd number of images. Suppose that \(p\) is an event and \(T\) the history of a light source in a globally hyperbolic space-time \((M,g)\). Uhlenbeck’s Morse theory of null geodesics is used to show under quite general conditions that if there are at most a finite number \(n\) of future-directed null geodesics from \(T\) to \(p\), then \(M\) is contractible to a point. Moreover, \(n\) is odd and \({1/2}(n-1)\) of the images of the source seen by an observer at \(p\) have the opposite orientation to the source. An analogous result is noted for Riemannian manifolds with positive definite metric. Cited in 13 Documents MSC: 53Z05 Applications of differential geometry to physics 53C80 Applications of global differential geometry to the sciences 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 83C99 General relativity Keywords:gravitational lens; globally hyperbolic space-time; null geodesics PDF BibTeX XML Cite \textit{R. H. A. McKenzie}, J. Math. Phys. 26, 1592--1596 (1985; Zbl 0569.53043) Full Text: DOI References: [1] DOI: 10.1086/158365 · doi:10.1086/158365 [2] DOI: 10.1086/158750 · doi:10.1086/158750 [3] DOI: 10.1086/183759 · doi:10.1086/183759 [4] DOI: 10.1126/science.223.4631.46 · doi:10.1126/science.223.4631.46 [5] DOI: 10.1086/183260 · doi:10.1086/183260 [6] DOI: 10.1086/183466 · doi:10.1086/183466 [7] DOI: 10.2307/3968435 · doi:10.2307/3968435 [8] DOI: 10.1016/0040-9383(75)90037-3 · Zbl 0323.58010 · doi:10.1016/0040-9383(75)90037-3 [9] DOI: 10.2307/1969485 · Zbl 0045.26003 · doi:10.2307/1969485 [10] DOI: 10.1016/0040-9383(63)90013-2 · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2 [11] DOI: 10.1086/153300 · doi:10.1086/153300 [12] DOI: 10.1086/158751 · doi:10.1086/158751 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.