On the solution of discretized obstacle problems by an adapted penalty method. (English) Zbl 0569.65050

We present a mutual adjustment for mesh size parameters of the discretization and for penalty parameters. This enables to restrict the error resulting from the penalty technique to the same order as the discretization error without destroying the conditioning of the problem. Furthermore we analyze the convergence of the discrete coincidence set.


65K10 Numerical optimization and variational techniques
49M30 Other numerical methods in calculus of variations (MSC2010)
49J40 Variational inequalities
Full Text: DOI


[1] Caffarelli, L. L., Friedman, A.: The free boundary for elastic-plastic torsion problems. Trans. Amer. Math. Soc.252, 65–97 (1979). · Zbl 0426.35033 · doi:10.1090/S0002-9947-1979-0534111-0
[2] Ciarlet, P.: The finite element method for elliptic problems. Amsterdam: North Holland 1978. · Zbl 0383.65058
[3] Glowinski, R., Lions, J. L., Trémoliere, R.: Numerical analysis of variational inequalities. (2nd ed.). Amsterdam: North Holland 1981.
[4] Friedman, A.: Variational principles and free-boundary value problems. New York: Wiley 1982. · Zbl 0564.49002
[5] Grossmann, C.: Mixed finite element methods and penalties for weakly nonlinear partial differential equations. In: Math. Research No. 21. Berlin: Akademie Verlag 1984.
[6] Grossmann, C., Kaplan, A. A.: O resenii konečnomernyh zadač, voznikajuščih pri approksimacii variacionnyh neravenstv. Optimizacija (Novosibirsk)32, 5–19 (1983).
[7] Grossmann, C., Kaplan, A. A.: On the rate of convergence of sequential unconstrained minimization techniques. RAIRO Numer. Anal.17, 267–292 (1983). · Zbl 0526.65043
[8] Oganesjan, L. A., Ruhovec, L. A.: Variationno-rasnostyne metody rešenija elliptičeskih uravnenij. Isd-vo AN Arm. SSR, Erevan, 1979.
[9] Rivkind, V. Ja.: Metod konečnogo elementa dlja rešenija zadač s organičenijami. Trud. 3-j vsesojuznoj konf. čisl. met. res. zadač teorii uprugosti i plastičnosti. Novosibirsk, 1974, pp. 74–82.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.