×

zbMATH — the first resource for mathematics

Global optimization, level set dynamics, incomplete sensitivity and regularity control. (English) Zbl 1184.76833
Summary: We aim to optimize aerodynamic shapes using an incomplete sensitivity concept and regularization (projection) when control parameters are characteristic functions as in level set and immersed boundary approaches. The projection operator is also used to define a rotation operator over the unit sphere in the admissible space to improve sensitivity definition from the incomplete sensitivity. Hence, the direction of descent is found as a solution of a one-dimensional minimization problem. This is suitable for large dimension control spaces, avoids an adjoint formulation and is particularly interesting for sensitivity evaluation for black-box solvers. The approach is applied to various shape design in supersonic regime with level sets.

MSC:
76N25 Flow control and optimization for compressible fluids and gas dynamics
76J20 Supersonic flows
Software:
TAPENADE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allaire G., C.R. Acad. Sci. Paris, Ser. I 334 pp 1125– (2002) · Zbl 1115.49306
[2] DOI: 10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051
[3] DOI: 10.1007/s002110050401 · Zbl 0921.76168
[4] DOI: 10.1007/BFb0086904
[5] DOI: 10.1007/3-540-10694-4_22
[6] DOI: 10.1016/0045-7825(82)90128-1 · Zbl 0508.73063
[7] DOI: 10.1137/S0363012900369538 · Zbl 0990.49028
[8] DOI: 10.1016/0045-7825(94)90022-1 · Zbl 0845.76069
[9] Griewank A., Computational Differentiation (2001)
[10] Hascoet, L. and Pascual, V., TAPENADE 2.1 user’s guide, INRIA RT-300 2004
[11] DOI: 10.1146/annurev.fluid.37.061903.175743 · Zbl 1117.76049
[12] Ivorra, B., Semi-deterministic global optimization. PhD, University of Montpellier, 2006 · Zbl 1110.76311
[13] Ivorra B., Int. J. Num. Meth. Engineering 26 pp 2220– (2006)
[14] DOI: 10.1006/jcph.2001.6778 · Zbl 1057.76039
[15] Leveque R.J., SIAM J. Num. Anal. 31 pp 1001– (1994) · Zbl 0811.65083
[16] DOI: 10.1108/09615530410546272 · Zbl 1075.76054
[17] Mohammadi B., Applied Shape Optimization for Fluids (2001) · Zbl 0970.76003
[18] DOI: 10.1146/annurev.fluid.36.050802.121926 · Zbl 1076.76020
[19] Mohammadi B., Annu. Rev. Fluid Mech. 36 (2004) · Zbl 1076.76020
[20] Mohammadi B., Pratique de la Simulation numérique (2003)
[21] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132
[22] DOI: 10.1146/annurev.fl.14.010182.001315
[23] DOI: 10.1016/0021-9991(81)90128-5 · Zbl 0474.65066
[24] Sethian J.A., Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences (1999) · Zbl 0973.76003
[25] Van Albada G.D., ICASE 84 (1984)
[26] DOI: 10.1016/j.finel.2004.01.010
[27] DOI: 10.1002/fld.867 · Zbl 1134.76326
[28] DOI: 10.2514/2.1613
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.