×

zbMATH — the first resource for mathematics

Nilpotent orbits in the dual of classical Lie algebras in characteristic 2 and the Springer correspondence. (English) Zbl 1250.17009
Summary: Let \(G\) be a simply connected algebraic group of type \(B, C\) or \( D\) over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the dual vector space of the Lie algebra of \(G\). In particular, we classify the nilpotent orbits in the duals of symplectic and orthogonal Lie algebras over algebraically closed or finite fields of characteristic 2.

MSC:
17B08 Coadjoint orbits; nilpotent varieties
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5 – 171 (French). · Zbl 0536.14011
[2] Wim H. Hesselink, Nilpotency in classical groups over a field of characteristic 2, Math. Z. 166 (1979), no. 2, 165 – 181. · Zbl 0387.20038
[3] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1 – 211. · Zbl 1169.14319
[4] V. Kac and B. Weisfeiler, Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic \?, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38 (1976), no. 2, 136 – 151. · Zbl 0324.17001
[5] Reinhardt Kiehl and Rainer Weissauer, Weil conjectures, perverse sheaves and \?’adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 42, Springer-Verlag, Berlin, 2001. · Zbl 0988.14009
[6] David B. Leep and Laura Mann Schueller, Classification of pairs of symmetric and alternating bilinear forms, Exposition. Math. 17 (1999), no. 5, 385 – 414. · Zbl 0958.15023
[7] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205 – 272. · Zbl 0547.20032
[8] G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374 – 403. , https://doi.org/10.1090/S1088-4165-03-00204-8 G. Lusztig, Character sheaves on disconnected groups. II, Represent. Theory 8 (2004), 72 – 124. , https://doi.org/10.1090/S1088-4165-04-00238-9 G. Lusztig, Character sheaves on disconnected groups. III, Represent. Theory 8 (2004), 125 – 144. , https://doi.org/10.1090/S1088-4165-04-00239-0 G. Lusztig, Character sheaves on disconnected groups. IV, Represent. Theory 8 (2004), 145 – 178.
[9] George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226 – 265, 266 – 315. , https://doi.org/10.1016/0001-8708(85)90064-7 George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1 – 63. , https://doi.org/10.1016/0001-8708(86)90036-8 George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103 – 155. , https://doi.org/10.1016/0001-8708(86)90071-X George Lusztig, Erratum: ”Character sheaves. V”, Adv. in Math. 62 (1986), no. 3, 313 – 314. · Zbl 0606.20036
[10] G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323 – 335. · Zbl 0435.20021
[11] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. · Zbl 0433.14012
[12] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[13] T. Xue, Nilpotent orbits in classical Lie algebras over finite fields of characteristic 2 and the Springer correspondence. Represent. Theory 13 (2009), 371-390. · Zbl 1245.14046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.