×

On certain vector valued Siegel modular forms of degree two. (English) Zbl 0571.10028

Let \(\Gamma_ 2\) be the full Siegel modular group of degree two, \(H_ 2\) the Siegel upper half plane of degree two and \(S_ 2\) the \({\mathbb{C}}\)- vector space of all complex symmetric matrices of size two. A holomorphic Siegel modular form f of type (k,2) and of degree two is an \(S_ 2\) valued holomorphic function on \(H_ 2\) satisfying the equation \[ f((AZ+B) (CZ+D)^{-1})=| CZ+D|^ k (CZ+D) f(Z)^ t(CZ+D) \] for all \(Z\in H_ 2\) and \(M=\left( \begin{matrix} A\quad B\\ C\quad D\end{matrix} \right)\in \Gamma_ 2\). We denote by \(M_ k(\Gamma_ 2)\) the set of (usual scalar valued) holomorphic Siegel modular forms of weight k. For \(f\in M_ k(\Gamma_ 2)\) and \(g\in M_ j(\Gamma_ 2)\), we put \([f,g]=(1/2\pi i)((1/k)g (d/dZ)f-(1/j)g (d/dZ)f).\) Then [f,g]\(\in M_{k+j,2}(\Gamma_ 2)\) [see the final section of G. Shimura, Duke Math. J. 44, 365-387 (1977; Zbl 0371.14023)]. Then the author proves the following result. Theorem. For an even integer \(k\geq 0\), we have (as a \({\mathbb{C}}\)-vector space) \[ M_{k,2}(\Gamma_ 2)=M_{k-10}(\Gamma_ 2)[\phi_ 4,\phi_ 6]\quad \oplus \quad M_{k-14}(\Gamma_ 2)[\phi_ 4,\chi_{10}]\quad \oplus \quad M_{k-16}(\Gamma_ 2)[\phi_ 4,\chi_{12}]\quad \oplus \]
\[ \oplus \quad V_{k-16}(\Gamma_ 2)[\phi_ 6,\chi_{10}]\quad \oplus \quad V_{k-18}(\Gamma_ 2)[\phi_ 6,\chi_{12}]\quad \oplus \quad W_{k-22}(\Gamma_ 2)[\chi_{10},\chi_{12}] \] where \(V_ k(\Gamma_ 2)=M_ k(\Gamma_ 2)\cap {\mathbb{C}}[\phi_ 6,\chi_{10},\chi_{12}]\) and \(W_ k(\Gamma_ 2)=M_ k(\Gamma_ 2)\cap {\mathbb{C}}[\chi_{10},\chi_{12}].\) [For particular elements of modular forms, see H. Maass, Math. Ann. 232, 163-175 (1978; Zbl 0349.10020)]. Some congruences of eigenvalues of Hecke operators are also proved. In the proofs, some properties of real analytic modular forms are used.

MSC:

11F27 Theta series; Weil representation; theta correspondences
11F33 Congruences for modular and \(p\)-adic modular forms
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surv.29, 45-116 (1974) · Zbl 0304.10021
[2] Andrianov, A.N.: Modular decent and the Saito-Kurokawa conjecture. Invent. Math.53, 267-280 (1979) · Zbl 0414.10017
[3] Arakawa, T.: Vector valued Siegel’s modular forms of degree two and the associated AndrianovL-functions. Manuscr. Math.44, 155-185 (1983) · Zbl 0517.10024
[4] Borel, A.: Introduction to automorphic forms. Proc. Symp. Pure Math.9, 199-210 (1966) · Zbl 0191.09601
[5] Cohen, H.: Sums involving the values at negative integers ofL-functions of quadratic characters. Math. Ann.217, 271-285 (1975) · Zbl 0311.10030
[6] Deligne, P.: Formes modulaires et représentations ?-adiques. Séminaire Bourbaki, Exp. 355 (February 1969). Lect. Notes Math.179, 139-186. Berlin, Heidelberg, New York: Springer 1971
[7] Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. Éc. Norm. Super.7, 507-530 (1974) · Zbl 0321.10026
[8] Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. Éc. Norm. Super.14, 77-120 (1981) · Zbl 0465.10022
[9] Harris, M., Jakobsen, H.P.: Singular holomorphic representations and singular modular forms. Math. Ann.259, 227-244 (1982) · Zbl 0478.32026
[10] Igusa, J.: On Siegel modular forms of genus two. II. Am. J. Math.86, 392-412 (1964) · Zbl 0133.33301
[11] Igusa, J.: On the ring of modular forms of degree two overZ. Am. J. Math.101, 149-193 (1979) · Zbl 0415.14026
[12] Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math.49, 149-165 (1978) · Zbl 0397.10018
[13] Kurokawa, N.: Congruences between Siegel modular forms of degree two. Proc. Jap. Acad.55A, 417-422 (1979) · Zbl 0454.10016
[14] Kurokawa, N.: On Eisenstein series for Siegel modular groups. Proc. Jap. Acad.57A, 51-55 (1981) · Zbl 0482.10026
[15] Kurokawa, N.: On Siegel eigenforms. Proc. Jap. Acad.57A, 45-50 (1981) · Zbl 0482.10025
[16] Maass, H.: Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen. Math. Ann.126, 44-68 (1953) · Zbl 0053.05602
[17] Maass, H.: Siegel’s modular forms and Dirichlet series. Lect. Notes Math. 216. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0224.10028
[18] Maass, H.: Lineare Relationen für die Fourierkoeffizienten einiger Modulformen zweiten Grades. Math. Ann.232, 163-175 (1978) · Zbl 0361.10024
[19] Mizumoto, S.: Fourier coefficients of generalized Eisenstein series of degree two. I. Invent. Math.65, 115-135 (1981) · Zbl 0461.10018
[20] Resnikoff, H.L., Saldaña, R.L.: Some properties of Fourier coefficients of Eisenstein series of degree two. J. Reine Angew. Math.265, 90-109 (1974) · Zbl 0278.10028
[21] Serre, J.-P.: Une interprétation des congruences relatives à la fonction ? de Ramanujan, Séminaire Delange-Pisot-Poitou, 1967-68, Exp. 14 (1968)
[22] Serre, J.-P.: Congruences et formes modulaires. Séminaire Bourbaki, Exp. 416 (1972). Lect. Notes Math. 317, 319-339. Berlin, Heidelberg, New York: Springer 1973
[23] Shimura, G.: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math.29, 783-804 (1976) · Zbl 0348.10015
[24] Shimura, G.: On the derivatives of theta functions and modular forms. Duke Math. J.44, 365-387 (1977) · Zbl 0371.14023
[25] Tsushima, R.: An explicit dimension formula for the spaces of generalized automorphic form with respect toSp(2,Z). Proc. Jap. Acad.59A, 139-142 (1983) · Zbl 0513.10025
[26] Tsushima, R.: An explicit dimension formula for the spaces of generalized automorphic form with respect toSp(2,Z). Preprint (1983) · Zbl 0513.10025
[27] Yoshida, H.: Siegel’s modular forms and the arithmetic of quadratic forms. Invent. Math.60, 193-248 (1980) · Zbl 0453.10022
[28] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lect. Notes Math. 627, 105-169. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0372.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.