×

zbMATH — the first resource for mathematics

Optimale Koeffizienten bezüglich zusammengesetzter Zahlen. (Optimal coefficients modulo composite numbers). (German) Zbl 0571.10040
For the dimension \(s=3\) the existence of optimal coefficients, satisfying further properties important in the theory of pseudo-random numbers, modulo the sequence of prime-powers is shown.

MSC:
11K99 Probabilistic theory: distribution modulo \(1\); metric theory of algorithms
65C10 Random number generation in numerical analysis
11K06 General theory of distribution modulo \(1\)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Mh. Math.66, 140-151 (1962). · Zbl 0105.04603
[2] Korobov, N. M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk. SSSR124, 1207-1210 (1959). · Zbl 0089.04201
[3] Korobov, N. M.: Numbertheoretical Methods in Approximate Analysis. Moskau. Fizmatgiz. 1963. · Zbl 0115.11703
[4] Larcher, G.: Optimale Koeffizienten bezüglich zusammengesetzter Zahlen. Dissertation. Univ. Salzburg (1984). · Zbl 0571.10040
[5] Niederreiter, H.: On the distribution of pseudo-random numbers generated by the linear congruential method I. Math. Comp.26, 793-795 (1972). · Zbl 0258.65004
[6] Niederreiter, H.: On the distribution of pseudo-random numbers generated by the linear congruential method II. Math. Comp.28, 1117-1132 (1974). · Zbl 0303.65003
[7] Niederreiter, H.: On the distribution of pseudo-random numbers generated by the linear congruential method III. Math. Comp.30, 571-597 (1976). · Zbl 0342.65002
[8] Niederreiter, H.: Pseudo-random numbers and optimal coefficients. Adv. Math.26, 99-181 (1977). · Zbl 0366.65004
[9] Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Mh. Math.86, 203-219 (1978). · Zbl 0395.10053
[10] Zaremba, S. K.: Good lattice points modulo composite numbers. Mh. Math.78, 446-460 (1974). · Zbl 0292.10023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.