×

zbMATH — the first resource for mathematics

Two-point functions on Riemannian manifolds. (English) Zbl 0571.53031
Let (M,g) be a smooth Riemannian manifold of dimension \(n\geq 2\). A smooth function F on a neighborhood U of the diagonal in \(M\times M\) is called a two-point function if for every (x,y)\(\in U\) there exists a shortest geodesic joining x to y. The authors give the basic elements of the theory of two-point functions and then obtain results with respect to harmonic spaces and spaces with volume-preserving symmetries. The clarity of the paper is noteworthy.
Reviewer: A.Bejancu

MSC:
53C22 Geodesics in global differential geometry
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berger, M., Gauduchon, P. and Mazet, E.:Le spectre d’une vari?t? riemannienne, Lecture Notes in Mathematics, 194, Springer-Verlag, Berlin, 1971. · Zbl 0223.53034
[2] Besse, A.L.:Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, 93, Springer-Verlag, Berlin, 1978. · Zbl 0387.53010
[3] Chen, B.Y. and Vanhecke, L.: Differential geometry of geodesic spheres,J. Reine Angew. Math. 325 (1981), 28-67. · Zbl 0503.53013
[4] D’atri, J.E. and Nickerson, H.K.: Geodesic symmetries in spaces with special curvature tensor,J. Differential Geometry 9 (1974), 251-262. · Zbl 0285.53019
[5] D’atri, J.E.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces,Michigan Math. J. 22 (1975), 71-76. · Zbl 0317.53045
[6] Gray, A. and Vanhecke, L.: Riemannian geometry as determined by the volumes of small geodesic balls,Acta M Math. 142 (1979), 157-198. · Zbl 0428.53017
[7] Kowalski, O. and Vanhecke, L.: Op?rateurs diff?rentiels invariants et symm?tries g?odesiques pr?servant le volume,C.R. Acad. Sc. Paris, S?rie I 296 (1983), 1001-1003.
[8] Kowalski, O. and Vanhecke, L. : A generalization of a theorem on naturally reductive homogeneous spaces,Proc. Amer. Math. Soc., to appear. · Zbl 0542.53029
[9] Lichnerowicz, A.: Op?rateurs diff?rentiels invariant sur un espace homog?ne,Ann. Sc. Ecole Norm. Sup. 81 (1964), 341-385.
[10] Roberts, P.H. and Ursell, H.D.: Random walk on a sphere and on a Riemannian manifold,Phil. Trans. Royal Soc. London A 252 (1960), 317-356. · Zbl 0094.31901
[11] Ruse, H.S.: On commutative Riemannian manifolds,Tensor 26 (1972), 180-184. · Zbl 0259.53037
[12] Ruse, H.S., Walker, A.G. and Willmore, T.J. :Harmonic spaces, Cremonese, Roma, 1961. · Zbl 0134.39202
[13] Sumitomo, T.: On a certain class of Riemannian homogeneous spaces,Colloq. Math. 26 (1971), 129-133. · Zbl 0249.53042
[14] Sumitomo, T.: On the commutator of differential operators,Hokkaido Math. J. 1 (1972), 30-42. · Zbl 0248.53050
[15] Vanhecke, L.: 1-harmonic spaces are harmonic,Bull. London Math. Soc. 13 (1981), 409-411. · Zbl 0474.53025
[16] Vanhecke, L.: A note on harmonic spaces,Bull. London Math. Soc. 13 (1981), 545-546. · Zbl 0472.53048
[17] Vanhecke, L.: A conjecture of Besse on harmonic manifolds,Math. Z. 178 (1981), 555-557. · Zbl 0465.53030
[18] Vanhecke, L.: Some solved and unsolved problems about harmonic and commutative spaces,Bull. Soc. Math. Belg. B34 (1982), 1-24. · Zbl 0518.53042
[19] Vanhecke, L. and Willmore, T.J.: Riemannian extensions of D’Atri spaces,Tensor 38 (1982), 154-158. · Zbl 0505.53016
[20] Vanhecke, L.: The canonical geodesic involution and harmonic spaces,Ann. Global Analysis and Geometry 1 (1983), 131-136. · Zbl 0532.53015
[21] Vanhecke, L. and Willmore, T.J.: Interaction of tubes and spheres,Math. Ann. 263 (1983), 31-42. · Zbl 0502.53032
[22] Willmore, T.J.: 2-point invariant functions and k-harmonic manifolds,Rev. Rouwaine Math. Pures Appl. 13 (1968), 1051-1057. · Zbl 0169.53302
[23] Willmore, T.J. and El Hadi, K.: k-harmonic symmetric manifolds,Rev. Roumaine Math. Pures Appl. 15 (1970), 1573-1577. · Zbl 0209.25302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.