×

Least absolute deviations estimation for the censored regression model. (English) Zbl 0571.62100

This paper deals with the model \(Y_ t=\max (0\), \(x'_ t\beta_ 0+u_ t)\), \(t=1,...,T\). \(u_ t\) are unobservable disturbance terms with median zero and continuous distribution, mutually independent. Then \(\max(0,x'_ t\beta_ 0)\) is the median of \(y_ t\), given the exogenous variables \(x_ t\). \(\beta_ 0\) is estimated by minimizing \(\sum^{T}_{t=1}| y_ t-\max (0,x'_ t\beta)|\) over a compact set B.
The author formulates conditions on \(\{x_ t\}\) and \(\{u_ t\}\) in order that the estimators \({\hat \beta}_ T\) of \(\beta\) converge to \(\beta_ 0\) almost surely as \(T\to \infty\). Also conditions are formulated that \(\sqrt{T}({\hat\beta}_ T-\beta_ 0)\) is asymptotically normally distributed. The asymptotic covariance matrix is determined and estimated consistently.
Reviewer: H.Drygas

MSC:

62P20 Applications of statistics to economics
62F12 Asymptotic properties of parametric estimators
62J99 Linear inference, regression
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Amemiya, T., Regression analysis when the dependent variable is truncated normal, Econometrica, 41, 997-1016 (1973) · Zbl 0282.62061
[2] Amemiya, T., Two stage least absolute deviations estimators, Econometrica, 50, 689-711 (1982) · Zbl 0493.62098
[3] Arabmazar, A.; Schmidt, P., Further evidence on the robustness of the Tobit estimator to heteroskedasticity, Journal of Econometrics, 17, 253-258 (1981)
[4] Arabmazar, A.; Schmidt, P., An investigation of the robustness of the Tobit estimator to non-normality, Econometrica, 50, 1055-1063 (1982) · Zbl 0497.62036
[5] Bassett, G.; Koenker, R., Asymptotic theory of least absolute error regression, Journal of the American Statistical Association, 73, 667-677 (1978)
[6] Bickel, P. J., One-step Huber estimation in the linear model, Journal of the American Statistical Association, 70, 428-433 (1975) · Zbl 0322.62038
[7] Buckley, J.; James, I., Linear regression with censored data, Biometrika, 66, 429-436 (1979) · Zbl 0425.62051
[8] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society B, 39, 1-22 (1977) · Zbl 0364.62022
[9] Goldberger, A. S., Abnormal selection bias, (Workshop paper no. 8006 (1980), Social Systems Research Institute, University of Wisconsin: Social Systems Research Institute, University of Wisconsin Madison, WI) · Zbl 0568.62099
[10] Hausman, J. A., Specification tests in econometrics, Econometrica, 46, 1251-1271 (1978) · Zbl 0397.62043
[11] Heckman, J., The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models, Annals of Economic and Social Measurement, 5, 475-492 (1976)
[12] Heckman, J., Sample bias as a specification error, Econometrica, 47, 153-162 (1979) · Zbl 0392.62093
[13] Himmelblau, D. M., (Applied nonlinear programming (1972), McGraw-Hill: McGraw-Hill New York)
[14] Huber, P. J., Robust estimation of a location parameter, Annals of Mathematical Statistics, 35, 73-101 (1964) · Zbl 0136.39805
[15] Huber, P. J., The behavior of maximum likelihood estimates under nonstandard conditions, Proceedings of the Fifth Berkeley Symposium, 1, 221-233 (1965)
[16] Jurečková, J., Asymptotic relations of \(M\)-estimates and \(R\)-estimates in the linear model, Annals of Statistics, 5, 464-472 (1977) · Zbl 0365.62034
[17] Kalbfleisch, J. O.; Prentice, R. L., (The statistical analysis of failure time data (1980), Wiley: Wiley New York) · Zbl 0504.62096
[18] Kaplan, E. L.; Meier, P., Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481 (1958) · Zbl 0089.14801
[19] Koenker, R.; Bassett, G., Robust tests for heteroscedasticity based on regression quantiles, Econometrica, 50, 43-61 (1982) · Zbl 0482.62023
[20] Koenker, R.; Bassett, G., Tests of linear hypotheses and \(L_1\) estimation, Econometrica, 50, 1577-1583 (1982) · Zbl 0497.62057
[21] Maddala, G. S.; Nelson, F. D., Specification errors in limited dependent variable models, National Bureau for Economic Research working paper no. 96 (1975)
[22] Nelder, J. A.; Mead, R., A simplex method for function minimization, The Computer Journal, 7, 308-313 (1965) · Zbl 0229.65053
[23] Obenhofer, W., The consistency of nonlinear regression minimizing the \(L_1\) norm, Annals of Statistics, 10, 316-319 (1982)
[24] Parzen, E., On estimation of a probability density function and its mode, Annals of Mathematical Statistics, 33, 1065-1076 (1962) · Zbl 0116.11302
[25] Powell, J. L., The asymptotic normality of two-stage least absolute deviations estimators, Econometrica, 51, 1569-1575 (1983) · Zbl 0537.62095
[26] Powell, M. J.D, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The Computer Journal, 7, 155-162 (1964) · Zbl 0132.11702
[27] Robinson, P. M., On the asymptotic properties of estimators of models containing limited dependent variables, Econometrica, 50, 27-41 (1982) · Zbl 0524.62117
[28] Ruppert, D.; Carroll, R. J., Trimmed least squares estimation in the linear model, Journal of the American Statistical Association, 75, 828-838 (1980) · Zbl 0459.62055
[29] Taylor, L. D., Estimation by minimizing the sum of absolute errors, (Zarembka, P., Frontiers in econometrics (1974), Academic Press: Academic Press New York)
[30] Tobin, J., Estimation of relationships for limited dependent variables, Econometrica, 26, 24-36 (1958) · Zbl 0088.36607
[31] White, H., Nonlinear regression on cross-section data, Econometrica, 48, 721-746 (1980) · Zbl 0442.62050
[32] White, H., A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817-838 (1980) · Zbl 0459.62051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.