Systolic trellis automata. I. (English) Zbl 0571.68041

This article is reviewed together with the following one (see Zbl 0571.68042).


68Q45 Formal languages and automata
68Q80 Cellular automata (computational aspects)
68Q05 Models of computation (Turing machines, etc.) (MSC2010)
Full Text: DOI


[1] Berstel J., Transductions and Context-Free Languages (1979) · Zbl 0424.68040 · doi:10.1007/978-3-663-09367-1
[2] Culik K., Systolic Automata for VLS (1981)
[3] Culik K., Systolic trellis automata: stability, decidability and complexity (1982) · Zbl 0626.68048
[4] Culik K., Acta Informatica 18 pp 335– (1983) · Zbl 0493.68054 · doi:10.1007/BF00289573
[5] Culik II K, RAIRO
[6] Kung, H.T. Let’s design algorithms for VLSI systems. Proc. Caltech Conference on Very Large Scale Integration. Edited by: Seitz, Ch.L. pp.65–90. Pasadena.
[7] Kung H.T., The structure of parallel algorithms (1979)
[8] King H.T., Proc. Sparse Matrix pp 256– (1979)
[9] Leiserson, C.E. and Saxe, J. B. 1981. Optimising synchronous systems. Proc 22nd Annual Symposium on Foundations of Computer Science. 1981, Nashville, Tennessee. pp.23–36.
[10] Mead C.A., Introduction to VLSI Systems (1980)
[11] Ibarra O. H., Theoretical Computer Science
[12] Dyer C.R., Inf. and Control 44 pp 261– (1980) · Zbl 0442.68082 · doi:10.1016/S0019-9958(80)90164-3
[13] Umeoh, Information Proc Letters 14 pp 158– (1982) · Zbl 0488.68041 · doi:10.1016/0020-0190(82)90028-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.