×

zbMATH — the first resource for mathematics

The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields. (English) Zbl 1294.11110
Summary: We prove that for a large class of subvarieties of abelian varieties over global function fields, the Brauer-Manin condition on adelic points cuts out exactly the rational points. This result is obtained from more general results concerning the intersection of the adelic points of a subvariety with the adelic closure of the group of rational points of the abelian variety.

MSC:
11G35 Varieties over global fields
14K12 Subvarieties of abelian varieties
14G25 Global ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI Link arXiv
References:
[1] D. Abramovich and J. F. Voloch, ”Toward a proof of the Mordell-Lang conjecture in characteristic \(p\),” Internat. Math. Res. Notices, vol. 5, iss. 5, pp. 103-115, 1992. · Zbl 0787.14026
[2] N. Bourbaki, Algebra II. Chapters 4-7, New York: Springer-Verlag, 2003. · Zbl 1017.12001
[3] N. Bourbaki, Commutative Algebra, New York: Springer-Verlag, 1998. · Zbl 1101.13300
[4] A. Buium and J. F. Voloch, ”Integral points of abelian varieties over function fields of characteristic zero,” Math. Ann., vol. 297, iss. 2, pp. 303-307, 1993. · Zbl 0789.14017
[5] J. W. S. Cassels, ”Arithmetic on curves of genus \(1\). III. The Tate-Šafarevi\vc and Selmer groups,” Proc. London Math. Soc., vol. 12, pp. 259-296, 1962. · Zbl 0106.03705
[6] J. W. S. Cassels, ”Arithmetic on curves of genus \(1\). VII. The dual exact sequence,” J. Reine Angew. Math., vol. 216, pp. 150-158, 1964. · Zbl 0146.42304
[7] F. Delon, ”Separably closed fields,” in Model Theory and Algebraic Geometry, New York: Springer-Verlag, 1998, pp. 143-176. · Zbl 0925.03169
[8] C. D. González-Avilés and K. Tan, ”A generalization of the Cassels-Tate dual exact sequence,” Math. Res. Lett., vol. 14, pp. 295-302, 2007. · Zbl 1142.11045
[9] E. V. Flynn, ”The Hasse principle and the Brauer-Manin obstruction for curves,” Manuscripta Math., vol. 115, iss. 4, pp. 437-466, 2004. · Zbl 1069.11023
[10] M. J. Greenberg, ”Rational points in Henselian discrete valuation rings,” Inst. Hautes Études Sci. Publ. Math., vol. 31, pp. 59-64, 1966. · Zbl 0146.42201
[11] A. Grothendieck, ”Le groupe de Brauer. III. Exemples et compléments,” in Dix Exposés sur la Cohomologie des Schémas, Amsterdam: North-Holland, 1968, pp. 88-188. · Zbl 0198.25901
[12] E. Hrushovski, ”The Mordell-Lang conjecture for function fields,” J. Amer. Math. Soc., vol. 9, iss. 3, pp. 667-690, 1996. · Zbl 0864.03026
[13] S. Lang, Fundamentals of Diophantine Geometry, New York: Springer-Verlag, 1983, vol. 191. · Zbl 0528.14013
[14] S. Lang and A. Néron, ”Rational points of abelian varieties over function fields,” Amer. J. Math., vol. 81, pp. 95-118, 1959. · Zbl 0099.16103
[15] J. I. Manin, ”Rational points on algebraic curves over function fields,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 27, pp. 1395-1440, 1963. · Zbl 0178.55102
[16] Y. I. Manin, ”Le groupe de Brauer-Grothendieck en géométrie diophantienne,” in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Paris: Gauthier-Villars, 1971, pp. 401-411. · Zbl 0239.14010
[17] J. I. Manin, ”Rational points on algebraic curves over function fields,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 27, pp. 1395-1440, 1963. · Zbl 0178.55102
[18] J. S. Milne, ”Elements of order \(p\) in the Tate-Šafarevi\vc group,” Bull. London Math. Soc., vol. 2, pp. 293-296, 1970. · Zbl 0205.50801
[19] J. S. Milne, ”Congruence subgroups of abelian varieties,” Bull. Sci. Math., vol. 96, pp. 333-338, 1972. · Zbl 0247.14003
[20] J. S. Milne, Étale Cohomology, Princeton, N.J.: Princeton Univ. Press, 1980. · Zbl 0433.14012
[21] J. S. Milne, Arithmetic Duality Theorems, Boston, MA: Academic Press, Inc., 1986. · Zbl 0613.14019
[22] B. Poonen, ”Heuristics for the Brauer-Manin obstruction for curves,” Experiment. Math., vol. 15, iss. 4, pp. 415-420, 2006. · Zbl 1173.11040
[23] V. Scharaschkin, ”Local-global problems and the Brauer-Manin obstruction,” PhD Thesis , University of Michigan, 1999. · Zbl 0938.11053
[24] J. Serre, ”Sur les groupes de congruence des variétés abéliennes,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 28, pp. 3-20, 1964. · Zbl 0128.15601
[25] J. Serre, ”Sur les groupes de congruence des variétés abéliennes. II,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 35, pp. 731-737, 1971. · Zbl 0222.14025
[26] J. Serre, Local Fields, New York: Springer-Verlag, 1979. · Zbl 0423.12016
[27] J. Serre, Lie Algebras and Lie Groups, Second ed., New York: Springer-Verlag, 1992. · Zbl 0742.17008
[28] A. Skorobogatov, Torsors and Rational Points, Cambridge: Cambridge Univ. Press, 2001. · Zbl 0972.14015
[29] M. Stoll, ”Finite descent and rational points on curves,” Algebra and Number Theory, vol. 1, pp. 349-391, 2007. · Zbl 1167.11024
[30] J. F. Voloch, ”Diophantine approximation on abelian varieties in characteristic \(p\),” Amer. J. Math., vol. 117, iss. 4, pp. 1089-1095, 1995. · Zbl 0855.11029
[31] L. Wang, ”Brauer-Manin obstruction to weak approximation on abelian varieties,” Israel J. Math., vol. 94, pp. 189-200, 1996. · Zbl 0870.14032
[32] Y. G. Zarhin, ”Abelian varieties without homotheties,” Math. Res. Lett., vol. 14, iss. 1, pp. 157-164, 2007. · Zbl 1128.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.