Goldfeld, Dorian Gauss’ class number problem for imaginary quadratic fields. (English) Zbl 0572.12004 Bull. Am. Math. Soc., New Ser. 13, 23-37 (1985). Gauss’ class number problem for imaginary quadratic fields \(K_ D:=\mathbb Q(\sqrt{D})\), where \(D\in\mathbb Z\), \(D<0\), denotes the discriminant, consists in finding an effective algorithm for determining all such fields \(K_ D\) with given class number \(h_ D=h\). Of course, this task presupposes the truth of Gauss’ conjecture stating that there is only a finite number of those fields \(K_ D\) with fixed class number \(h_ D\). The author first describes the history of the problem, starting out with the observation of Euler and Legendre that \(x^ 2-x+41\) and \(x^ 2+x+41\) is a prime for \(x=1, 2,\dots, 40\) and \(x=0,1,\dots,39\) respectively, and winding up with the recent solution of the problem due to Goldfeld–Gross–Zagier. In fact, Gauss’ problem is settled by the following theorem of Goldfeld–Gross–Zagier: For every \(\varepsilon >0\), there exists an effectively computable constant \(c>0\) such that \(h_ D>c (\log | D|)^{1-\varepsilon}.\) Oesterlé (1984) computed the constant in this theorem and Mestre, Oesterlé and Serre, by showing that a certain elliptic curve is modular, made it possible to establish a complete list of all imaginary quadratic fields \(K_ D\) with class number \(h_ D=3\). The corresponding lists for the cases of \(h_ D=1\) and \(h_ D=2\) had been obtained earlier by Heegner-Baker-Stark-Deuring-Siegel and by Baker-Stark, respectively. The author points out that, when combined with the solution of the case of \(h_ D=4\), these results would yield the complete finite list of all integers n admitting a unique representation as a sum of three squares: \(n=x^ 2+y^ 2+z^ 2\) \((x\geq y\geq z\geq 0).\) Gauss’ conjecture itself turned out to be true already as a consequence of the theorem of Hecke–Deuring–Heilbronn stating that \(h_ D\to \infty\) as \(D\to -\infty\). A theorem of the author (1976) then reduces Gauss’ class number problem via the famous conjecture of Birch and Swinnerton-Dyer to showing that there exists a modular elliptic curve \(E_ 0\) over \(\mathbb Q\) whose Hasse-Weil \(L\)-function \(L(E_ 0,s)\) has a triple zero at \(s=1\). The amazing theorem of Gross-Zagier (1983) implies that this is true, e.g., for the curve \(E_ 0: -139y^ 2=x^ 3+4x^ 2-48x+80\) of conductor \(N=37\cdot (139)^ 2\). The combination of these latter two theorems finally led to the above-cited decisive theorem of Goldfeld–Gross–Zagier and hence to a complete solution of Gauss’ class number problem. We should like to mention that in the list of contributors to the class-number-one problem given on pp. 32–33, an important paper of C. Meyer [J. Reine Angew. Math. 242, 179–214 (1970; Zbl 0218.12007)] is missing, in which, aside from a detailed description of the history of the problem, a conjecture of Weber is proved. This conjecture played a controversial role in the interpretation of Heegner’s original reasoning in his solution of the class-number-one case. Reviewer: Horst G. Zimmer (Saarbrücken) Cited in 6 ReviewsCited in 38 Documents MSC: 11R29 Class numbers, class groups, discriminants 11R11 Quadratic extensions 11Y40 Algebraic number theory computations 11G05 Elliptic curves over global fields 01A50 History of mathematics in the 18th century 11-03 History of number theory 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 11F11 Holomorphic modular forms of integral weight Keywords:Birch-Swinnerton-Dyer conjecture; sums of squares; class number problem; imaginary quadratic fields; Gauss’ conjecture; modular elliptic curve; Hasse-Weil L-function; class-number-one problem Citations:Zbl 0551.12003; Zbl 0355.12005; Zbl 0345.12007; Zbl 0538.14023; Zbl 0218.12007 PDF BibTeX XML Cite \textit{D. Goldfeld}, Bull. Am. Math. Soc., New Ser. 13, 23--37 (1985; Zbl 0572.12004) Full Text: DOI OpenURL References: [1] A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika 15 (1968), 204 – 216. · Zbl 0169.37802 [2] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. (2) 94 (1971), 139 – 152. · Zbl 0219.12008 [3] B. J. Birch, Diophantine analysis and modular functions, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 35 – 42. [4] B. J. Birch and N. M. Stephens, Heegner’s construction of points on the curve \?²=\?³-1728\?³, Seminar on number theory, Paris 1981 – 82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 1 – 19. · Zbl 0633.90082 [5] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79 – 108. · Zbl 0147.02506 [6] S. Chowla, The Heegner-Stark-Baker-Deuring-Siegel theorem, J. Reine Angew. Math. 241 (1970), 47 – 48. · Zbl 0205.35402 [7] Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. · Zbl 0453.10002 [8] Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl 1, Math. Z. 37 (1933), no. 1, 405 – 415 (German). · Zbl 0007.29602 [9] Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169 – 179 (German). · Zbl 0155.38001 [10] L. Dirichlet, Recherches sur diverse applications de l’analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 19 (1839); ibid. 21 (1840). [11] L. Euler, Mém. de Berlin, année 1722, 36; Comm. Arith. 1, 584. [12] C. F. Gauss, Disquisitiones arithmeticae, 1801. [13] A. O. Gel\(^{\prime}\)fond, Transcendental and algebraic numbers, Translated from the first Russian edition by Leo F. Boron, Dover Publications, Inc., New York, 1960. [14] Dorian Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 611 – 615. · Zbl 0327.10042 [15] Dorian M. Goldfeld, A simple proof of Siegel’s theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055. · Zbl 0287.12019 [16] Dorian M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 624 – 663. · Zbl 0345.12007 [17] Dorian M. Goldfeld, The conjectures of Birch and Swinnerton-Dyer and the class numbers of quadratic fields, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976) Soc. Math. France, Paris, 1977, pp. 219 – 227. Astérisque No. 41 – 42. · Zbl 0355.12005 [18] Benedict Gross and Don Zagier, Points de Heegner et dérivées de fonctions \?, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 2, 85 – 87 (French, with English summary). · Zbl 0538.14023 [19] H. Hasse, Beweis analogous der Riemannschen Vermutung für die Artinsche und F. K. Schmidtschen Kongruenz-zetafunktionen in gewisse elliptischen Fallen, Nachr. Akad. Wiss. Göttingen (1933), 253-262. · Zbl 0007.39702 [20] Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227 – 253 (German). · Zbl 0049.16202 [21] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 2 5 (1934), 150-160. · Zbl 0009.29602 [22] H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser 2 5 (1934), 293-301. · Zbl 0010.33703 [23] Jeffrey Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980/81), no. 2, 167 – 174. · Zbl 0449.10030 [24] C. G. J. Jacobi, J. Math. 9 (1832), 189-192. [25] E. Landau, Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1902), 671-676. · JFM 34.0241.09 [26] E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Göttinger Nachr. (1918), 285-295. · JFM 46.0258.04 [27] J. L. Lagrange, Recherches d’arithmétique, Nouv. Mém. Acad. Berlin (1773), 265-312; Oeuvres, III, pp. 693-758. [28] A. M. Legendre, Théorie des nombres, Libraire Scientifique A. Hermann, Paris, 1798, pp. 69-76; 2nd éd., 1808, pp. 61-67; 3rd ed., 1830, pp. 72-80. [29] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33 – 186 (1978). · Zbl 0394.14008 [30] L. J. Mordell, On the Riemann hypothesis and imaginary quadratic fields with a given class number, J. London Math. Soc. 9 (1934), 289-298. · Zbl 0010.24902 [31] L. J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192. · JFM 48.1156.03 [32] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529 – 542. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V. · Zbl 0285.12004 [33] Joseph Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121-122 (1985), 309 – 323 (French). Seminar Bourbaki, Vol. 1983/84. [34] G. Rabinovitch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, Proc. Fifth Internat. Congress Math. (Cambridge), vo. I, 1913, pp. 418-421. · JFM 44.0244.01 [35] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86. · JFM 61.0170.02 [36] Carl Ludwig Siegel, Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968), 180 – 191 (German). · Zbl 0175.33602 [37] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1 – 27. · Zbl 0148.27802 [38] H. M. Stark, A historical note on complex quadratic fields with class-number one., Proc. Amer. Math. Soc. 21 (1969), 254 – 255. · Zbl 0191.33401 [39] H. M. Stark, On the ”gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16 – 27. · Zbl 0198.37702 [40] H. M. Stark, A transcendence theorem for class-number problems, Ann. of Math. (2) 94 (1971), 153 – 173. · Zbl 0229.12010 [41] Tikao Tatuzawa, On a theorem of Siegel, Jap. J. Math. 21 (1951), 163 – 178 (1952). · Zbl 0054.02302 [42] A. Weil, Sur un théorème de Mordell, Bull. Sci. Math. (2) 54 (1930), 182-191. · JFM 56.1004.02 [43] André Weil, Sur les fonctions algébriques à corps de constantes fini, C. R. Acad. Sci. Paris 210 (1940), 592 – 594 (French). · Zbl 0023.29401 [44] André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149 – 156 (German). · Zbl 0158.08601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.