zbMATH — the first resource for mathematics

Nontrivial solutions of elliptic boundary value problems with resonance at zero. (English) Zbl 0572.35037
This interesting paper deals with equilibria of a general non-linear parabolic bounday value problem. The author uses Conley’s homotopy index theory to obtain the existence of equilibria of the parabolic equation (i.e. solutions of the corresponding elliptic equation) and gets even some results about the dynamics of the parabolic problem. These results generalize an earlier paper of H. Amann and E. Zehnder [Ann. Sc. Norm. Super. Pisa Cl. Sci., IV Ser. 7, 539-603 (1980; Zbl 0452.47077)].

35J65 Nonlinear boundary value problems for linear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
Full Text: DOI
[1] Amann, H.; Zehnder, E., Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa, IV, Vol. VII, 539-603 (1980) · Zbl 0452.47077
[2] J.Carr,Applications of Centre Manifold Theory, Springer-Verlag, 1981. · Zbl 0464.58001
[3] C. C.Conley,Isolated Invariant Sets and The Morse Index, C.B.M.S.,38, Providence, 1978. · Zbl 0397.34056
[4] A.Friedman,Partial Differential Equations, Holt, Rinehart and Winston Inc., 1969. · Zbl 0224.35002
[5] D.Gilbarg - N. S.Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. · Zbl 0361.35003
[6] J. K.Hale,Theory of Functional Differential Equations, Springer-Verlag, 1977. · Zbl 0352.34001
[7] D.Henry,Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math.,840, Springer-Verlag, 1981. · Zbl 0456.35001
[8] P.Massatt, Obtaining L^∞ bounds from Lp bounds for solutions of various parabolic partial differential equations, preprint.
[9] H. O.Peitgen - K.Schmitt,Global topological perturbations of nonlinear elliptic eigenvalueproblems, preprint. · Zbl 0522.35044
[10] Rybakowski, K. P., On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 869, 351-382 (1982) · Zbl 0468.58016
[11] K. P.Rybakowski,On the Morse index for infinite-dimensional semiflows, in: « Dynamical Systems II » (Bednarek-Cesari, Eds.), Academic Press, (1982), pp. 633-637. · Zbl 0566.58031
[12] Rybakowski, K. P., The Morse index, repeller-attractor pairs and the connection index for semiflows on noncompaei spaces, J. Diff. Equations, 47, 66-98 (1983) · Zbl 0468.58015
[13] Rybakowski, K. P., Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Diff. Equations, 51, 182-212 (1984) · Zbl 0529.35040
[14] Rybakowski, K. P., Irreducible invariant sets and asymptotically linear functional differential equations, Boll. Un. Mat. Ital., (6), 3-B, 245-271 (1984) · Zbl 0583.34064
[15] K. P.Rybakowski,An index-product formula for the study of elliptic resonance problems, J. Diff. Equations, in press. · Zbl 0562.34038
[16] K. P.Rybakowski,An introduction to the homotopy index theory on noncompact spaces. Appendix to: J. Hale et al.,Introduction to infinite-dimensional semiflows-geometric theory, Springer-Verlag, 1983.
[17] K. P.Rybakowski - E.Zehnder,A Morse equation in Conley’s index theory for semiflows on metric spaces, Ergodic Theory and Dynamical Systems, in press. · Zbl 0581.54026
[18] E.Spanier,Algebraic Topology, McGraw-Hill Book Company, 1966. · Zbl 0145.43303
[19] R.Switzer,Algebraic Topology-Homotopy and Homology, Springer-Verlag, 1975. · Zbl 0305.55001
[20] Tanabe, H., Equations of Evolution (1979), London: Pitman Publishing Ltd., London
[21] C. R. F.Maunder,Algebraic Topology, Cambridge University Press, 1980. · Zbl 0435.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.