Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations. (English) Zbl 0572.58012

Under suitable assumptions on \(f: {\mathbb{R}}\to {\mathbb{R}}\) the Chafee-Infante problem \(u_ t=u_{xx}+\lambda f(u)\) on \(0<x<\pi\), \(u=0\) at \(x=0\), \(x=\pi\) for \(\lambda\geq 0\) is considered. The map \(F_{\lambda}: H^ 1_ 0(0,\pi)\to H^ 1_ 0(0,\pi)\), \(u|_{t=0}\to u|_{t=1}\) is shown to be a \(C^ 2\) Morse-Smale map, except for an exceptional set of \(\lambda\). The main point is the proof of transversality for the stable and unstable manifolds of equilibrium points.
Reviewer: G.Warnecke


37D15 Morse-Smale systems
35K55 Nonlinear parabolic equations
Full Text: DOI


[1] Abraham, R.; Robbin, J., Transversal Mappings and Flows (1967), Benjamin: Benjamin New York · Zbl 0171.44404
[2] Agmon, S., Unicité et convexité dans les problèmes differentielles (1966), Univ. of Montreal Press: Univ. of Montreal Press Montreal · Zbl 0147.07702
[3] Chafee, N.; Infante, E., A bifurcation problem for a nonlinear parabolic equation, J. Appl. Anal., 4, 17-37 (1974) · Zbl 0296.35046
[4] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0042.32602
[5] Crandall, M.; Rabinowitz, P., Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52, 161-180 (1973) · Zbl 0275.47044
[6] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, N. J · Zbl 0144.34903
[7] Grisvard, P., Caracterization de quelques espaces d’interpolation, Arch. Rational Mech. Anal., 25, 40-63 (1967) · Zbl 0187.05901
[8] Hale, J. K., Infinite Dimensional Dynamical Systems, (LCDS Report 81-22 (Nov. 1981), Division of Applied Mathematics, Brown University) · Zbl 0179.13303
[9] Henry, D., Geometric Theory of Semilinear Parabolic Equations, (Lecture Notes in Mathematics, Vol. 840 (1981), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0456.35001
[10] Hirsch, M.; Pugh, C.; Shub, M., Invariant Manifolds, (Lecture Notes in Mathematics, Vol. 583 (1977), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0355.58009
[11] Holmes, R., A formula for the spectral radius, Amer. Math. Monthly, 75, 163-166 (1968) · Zbl 0156.38202
[12] Lions, J. L.; Magenes, E., Nonhomogeneous Boundary Value Problems, (Grundlehren 181, Vol. I (1972), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0251.35001
[13] Matano, H., Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18, 221-227 (1978) · Zbl 0387.35008
[14] Oliva, W., Stability of Morse-Smale Maps, (Relatório Técnico MAP-8301 (Jan. 1983), Inst. Matem. e Estat., Univ. São Paulo) · Zbl 1505.37040
[15] Matano, H., Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo, 29, 401-441 (1982) · Zbl 0496.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.