×

zbMATH — the first resource for mathematics

Manifolds with non-positive curvature. (English) Zbl 0572.58019
This is an extended report on a problem session about geodesic flows held in May 1984. It provides a listing of recent results and conjectures together with an up-to-date bibliography.
Reviewer: H.Crauel

MSC:
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
58-02 Research exposition (monographs, survey articles) pertaining to global analysis
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/2007014 · Zbl 0506.58030 · doi:10.2307/2007014
[2] Burns, Ergod. Th. & Dynam. Sys. 3 pp 1– (1983)
[3] none, Uspekhi Mat. nauk. 36 pp 3– (1981)
[4] DOI: 10.1070/RM1981v036n04ABEH002636 · Zbl 0493.58001 · doi:10.1070/RM1981v036n04ABEH002636
[5] DOI: 10.1007/BF01389848 · Zbl 0311.58010 · doi:10.1007/BF01389848
[6] DOI: 10.2307/2373590 · Zbl 0254.58005 · doi:10.2307/2373590
[7] Berger, AMS Proc. Sympos. in Pure Math. 27 pp 129– (1975) · doi:10.1090/pspum/027.2/0383459
[8] DOI: 10.2307/2006982 · Zbl 0537.58038 · doi:10.2307/2006982
[9] DOI: 10.1007/BF01388833 · Zbl 0536.53048 · doi:10.1007/BF01388833
[10] Osserman, MSRI none pp none– (1984)
[11] Ballman, Ergod. Th. and Dynam. Sys. 2 pp 311– (1982)
[12] none, Funktsional. Anal. i Prilozhen. 3 pp 89– (1969)
[13] DOI: 10.1007/BF01456836 · Zbl 0487.53039 · doi:10.1007/BF01456836
[14] DOI: 10.1007/BF01076325 · Zbl 0207.20305 · doi:10.1007/BF01076325
[15] DOI: 10.1007/BF02760791 · Zbl 0314.58013 · doi:10.1007/BF02760791
[16] Anderson, J. Diff. Geom. 18 pp 701– (1983)
[17] DOI: 10.2307/1971239 · Zbl 0426.58016 · doi:10.2307/1971239
[18] DOI: 10.1002/cpa.3160250302 · doi:10.1002/cpa.3160250302
[19] Lawson, J. Diff. Geom. 7 pp 211– (1972)
[20] Kobayashi, Foundations of Differential Geometry 1 pp 179– (1963) · Zbl 0119.37502
[21] DOI: 10.1007/BF01192824 · Zbl 0504.53041 · doi:10.1007/BF01192824
[22] DOI: 10.1137/1121006 · Zbl 0361.60050 · doi:10.1137/1121006
[23] Katok, Ergod. Th. & Dynam. Sys. 2 pp 339– (1982)
[24] none, Izv. Akad. nauk. SSSR 37 pp 539– (1973)
[25] DOI: 10.1070/IM1973v007n03ABEH001958 · Zbl 0316.58010 · doi:10.1070/IM1973v007n03ABEH001958
[26] none, Ergod. Th. & Dynam. Sys none pp none– (1985)
[27] Hurder, MSRI none pp none– (1984)
[28] DOI: 10.1016/0040-9383(80)90015-4 · Zbl 0465.58027 · doi:10.1016/0040-9383(80)90015-4
[29] Ziller, Ergod. Th. & Dynam. Sys. 3 pp 135– (1983)
[30] DOI: 10.1090/S0002-9904-1971-12747-7 · Zbl 0237.53037 · doi:10.1090/S0002-9904-1971-12747-7
[31] DOI: 10.2307/1971319 · Zbl 0445.53026 · doi:10.2307/1971319
[32] Green, J. Diff. Geom. 13 pp 263– (1978)
[33] Fricke, Vorlesungen über die Theorie der Elliptischen Modulfunktionen/ Automorphen funktionen.G (1896)
[34] Sullivan, J. Diff. Geom. 18 pp 723– (1983)
[35] Eberlein, Pacific J. Math. 46 pp 45– (1973) · Zbl 0264.53026 · doi:10.2140/pjm.1973.46.45
[36] DOI: 10.1090/S0273-0979-1984-15238-8 · Zbl 0543.58023 · doi:10.1090/S0273-0979-1984-15238-8
[37] Eberlein, Ergod. Th. & Dynam. Sys. 3 pp 47– (1983)
[38] Spatzier, MSRI none pp none– (1983)
[39] DOI: 10.2307/1999335 · Zbl 0526.53045 · doi:10.2307/1999335
[40] none, Uspekhi Mat. nauk. SSSR 27 pp 21– (1972)
[41] DOI: 10.2307/1996132 · Zbl 0209.53304 · doi:10.2307/1996132
[42] DOI: 10.1070/RM1972v027n04ABEH001383 · doi:10.1070/RM1972v027n04ABEH001383
[43] Chen, Illinois J. Math. 24 pp 73– (1980)
[44] DOI: 10.1007/BF01197884 · Zbl 0421.58017 · doi:10.1007/BF01197884
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.