×

zbMATH — the first resource for mathematics

Uniform distribution of some special sequences. (English) Zbl 0573.10023
The authors prove the uniform distribution modulo 1 of the sequence (\(\alpha\) f(p)), where \(\alpha\) \(\neq 0\) is a real constant, f(x) is a continuously differentiable function with f(n)/(log n)\({}^{\ell}\to \infty\) (n\(\to \infty)\) for some \(\ell >1\), p runs over the prime numbers, and f satisfies one of the following conditions.
(1) f(x)\(\to \infty\) (x\(\to \infty)\), f’(x) log x monotone, n \(| f'(n)| \to \infty\) (n\(\to \infty).\)
(2) \(f'(x)>0\), \(f''(x)>0\), \(x^ 2 f''(x)\to \infty\) (x\(\to \infty)\). Furthermore the estimate \(D_ N\ll N^{-1/2+\epsilon}\) has been proved, where \(D_ N\) denotes the discrepancy of the sequence (log n!), \(n=1,2,...,N\) and any \(\epsilon >0\).
Reviewer: D.Leitmann

MSC:
11J71 Distribution modulo one
11L03 Trigonometric and exponential sums (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Cramer: Mathematical Method of Statistics. Princeton (1946). · Zbl 0063.01014
[2] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. Wiley (1974). · Zbl 0281.10001
[3] K. Nagasaka: On Benford’s law. Ann. Inst. Stat. Math., vol. 36, no. 2, part A, pp.337-352 (1984). · Zbl 0555.62016
[4] G. Rhin: Repartition modulo 1 de f(pn) quand f est une serie entiere. Lecture Notes in Math., vol. 475, Springer, pp. 176-244 (1975). · Zbl 0305.10046
[5] E. C. Titchmarsh: The Theory of the Riemann Zeta Function. Oxford (1951). · Zbl 0042.07901
[6] I. M. Vinogradov: On an estimate of trigonometric sums with prime numbers. Izv. Akad. Nauk SSSR, Ser. Mat., 12, 225-248 (1948) (in Russian). · Zbl 0033.16401
[7] A. Zygmund: Trigonometric Series, vol. 1, Cambridge (1959). · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.