zbMATH — the first resource for mathematics

On a modified Szasz-Mirakjan-operator. (English) Zbl 0573.41034
This paper defines a modified Szasz-Mirakjan-operator \[ S_{n,\delta}(f;x):=e^{-nx}\sum^{[n(x+\delta)]}_{k=0}((nx)^ k/k!)f(k/n) \] and gives a theorem on the convergence of a sequence of these operators.
Reviewer: Y.G.Shi

41A36 Approximation by positive operators
Full Text: DOI
[1] Grof, J, A szász ottó-féle operátor approximácios tulajdonságairól, MTA III, Oszt. Közl., 20, 35-44, (1971)
[2] Grof, J, Über approximation durch polynome mit belegfunktionen, Acta math. acad. sci. hungar., 35, 109-116, (1980) · Zbl 0452.41017
[3] Hermann, T, Approximation of unbounded functions on unbounded interval, Acta math. acad. sci. hungar., 29, 393-398, (1977) · Zbl 0371.41012
[4] Lehnhoff, H.G, Local nikolskii constants for a special class of Baskakov operators, J. approx. theory, 33, 236-247, (1981) · Zbl 0479.41017
[5] Rathore, R.K.S, Linear combinations of linear positive operators and generating relations in special functions, () · Zbl 0303.41018
[6] Szasz, O, Generalization of S. Bernstein’s polynomials to the infinite interval, J. res. nat. bur. of standards, 45, 239-245, (1950)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.