×

zbMATH — the first resource for mathematics

Endomorphism rings of modules and lattices of submodules. (English) Zbl 0574.16019
Translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 21, 183-254 (Russian) (1983; Zbl 0566.16018).

MSC:
16S50 Endomorphism rings; matrix rings
16W20 Automorphisms and endomorphisms
16-02 Research exposition (monographs, survey articles) pertaining to associative rings and algebras
PDF BibTeX Cite
Full Text: DOI
References:
[1] Automorphisms of Classical Groups [Russian translation], Mir, Moscow (1976).
[2] K. V. Agapitov, ”Epimorphisms of generalized uniserial rings and double centralizers of periodic modules over bounded hereditary Noetherian prime rings,” in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 3–19. · Zbl 0516.16024
[3] V. A. Andrunakievich, V. A. Arnautov, I. M. Goyan, and Yu. M. Ryabukhin, ”Associative rings,” J. Sov. Math.,14, No. 1 (1980). · Zbl 0446.16002
[4] V. A. Andrunakievich, V. A. Arnautov, and Yu. M. Ryabukhin, ”Rings,” in: Algebra, Topology, Geometry, 1965, Itogi Nauki, VINITI Akad. Nauk SSSR, Moscow (1967), pp. 133–180.
[5] é. A. Babaev, ”Semiheaps of semilinear mappings,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 5, 7–12 (1979). · Zbl 0434.20046
[6] é. A. Babaev and A. A. Makhmudov, ”Isomorphisms of semiheaps of linear mappings of a linear space,” Inst. Mat. Mekh. Akad. Nauk AzSSR, Baku (1981).
[7] K. I. Beidar, ”Modules over commutative semiprime rings,” Mat. Zametki,29, No. 1, 15–18 (1980). · Zbl 0457.13002
[8] I. Kh. Bekker, ”Torsion-free Abelian groups with periodic automorphism groups and first cohomology groups,” Editorial Board of Siberian Mathematical Journal, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1981) (VINITI No. 5656-81).
[9] I. Kh. Bekker, ”On affine groups of modules,” in: Materials of the 7th Regional Conference on Mathematics and Mechanics, Tomsk, November 17–19, 1981. Algebra Section. Tomsk (1981), pp. 2–3.
[10] I. Kh. Bekker and S. K. Rossoshek, ”Polynomial splittability and weakly rigid systems of torsion-free Abelian groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1979), pp. 3–13.
[11] N. P. Belyakova, ”Isomorphisms of lattices of {\(\alpha\)}-admissible subgroups of torsion-free Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 3–13 (1973). · Zbl 0281.20046
[12] V. Ya. Bloshchitsyn, ”Automorphisms of the general linear group over a commutative ring not generated by zero-divisors,” Algebra Logika,17, No. 6, 639–642 (1978). · Zbl 0432.20040
[13] I. V. Bobylev, ”The protective dimension of an Abelian group over its endomorphism ring,” Usp. Mat. Nauk,28, No. 2, 229–230 (1973). · Zbl 0279.20043
[14] I. V. Bobylev, ”Rings over which each module is endoprojective,” Usp. Mat. Nauk,29, No. 3, 182 (1974).
[15] I. V. Bobylev, ”The endoprojective dimension of modules,” Sib. Mat. Zh.,16, No. 4, 663–683 (1975). · Zbl 0313.16028
[16] L. A. Bokut’, Associative Rings [in Russian], Vol. I (Ring Constructions), Vol. II (Categories of Modules, Embeddings in Division Rings), Novosibirsk (1977, 1981).
[17] L. A. Bokut’, K. A. Zhevlakov, and E. N. Kuz’min, ”The theory of rings,” in: Algebra, Topology, Geometry, Itogi Nauki, VINITI Akad. Nauk SSSR, Moscow (1970), pp. 9–56.
[18] L. A. Bokut’, E. N. Kuz’min, and A. I. Shirshov, ”Rings,” Preprint, Institute of the Academy of Sciences of the USSR, Siberian Branch, Novosibirsk (1973).
[19] G. M. Brodskii, ”Torsions in modules,” Mat. Zametki,14, No. 4, 527–534 (1973).
[20] G. M. Brodskii, ”Endomorphism rings of free modules,” Mat. Sb.,94, No. 2, 226–242 (1974).
[21] G. M. Brodskii, ”Annihilator conditions in endomorphism rings of modules,” Mat. Zametki,16, No. 6, 933–942 (1974).
[22] G. M. Brodskii and A. G. Grigoryan, ”Endomorphism rings of modules,” Dokl. Akad. Nauk ArmSSR,69, No. 1, 15–18 (1979). · Zbl 0427.16023
[23] N. I. Vishnyakova and G. K. Kladov, ”Modules of rank 1 over a generalized valuation ring,” in: Computational Mathematics and Computational Engineering (Vychisl. Mat. Vychisl. Tekh.), No. 5, Kharkov (1974), pp. 135–137.
[24] L. I. Vlasova, ”Determination of groups by groups of homomorphisms,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 52–55 (1979). · Zbl 0426.20043
[25] 16th All-Union Algebra Conference, September 22–25, 1981, Abstracts of Reports, Parts 1 and 2, (Leningrad Branch of the Mathematical Institute, Academy of Sciences of the USSR, Leningrad State Univ., Moscow State Univ.), Leningrad (1981).
[26] 4th All-Union Symposium on the Theory of Rings, Algebras, and Modules, Institute of Mathematics and Computation Center, Academy of Sciences of the MoldSSR, Kishinev (1980).
[27] 5th All-Union Symposium on the Theory of Rings, Algebras, and Modules, Novosibirsk, September 21–23, 1982, Abstracts of Reports, Institute of Mathematics, Novosibirsk (1982).
[28] V. E. Govorov, ”Semiinjective modules,” Algebra Logika, Seminar,2, No. 6, 21–50 (1963).
[29] I. Z. Golubchik and V. T. Markov, ”Localization dimension of PI-rings,” Trudy Sem. im. I. G. Petrovskii, No. 6, 39–46 (1981). · Zbl 0467.16026
[30] I. Z. Golubchik and A. V. Mikhalev, ”Generalized group identities in classical groups,” Usp. Mat. Nauk,35, No. 6, 155–156 (1980). · Zbl 0455.20032
[31] I. Z. Golubchik and A. V. Mikhalev, ”Generalized group identities in classical groups,” J. Sov. Math.,27, No. 4 (1984). · Zbl 0548.20029
[32] I. Z. Golubchik and A. V. Mikhalev, ”Epimorphisms of projective groups over associative rings,” in: Algebra [in Russian], a collection of papers in honor of the 90th anniversary of the birthday of O. Yu. Shmidt, Moscow (1982), pp. 34–45.
[33] I. Z. Golubchik and A. V. Mikhalev, ”Isomorphisms of the full linear group over an associative ring,” Vestn. Mosk. Univ. Mat. Mekh., No. 3, 61–72 (1983). · Zbl 0534.20033
[34] I. M. Goyan, ”Isolated components of modules,” Mat. Issled., No. 49, 54–60 (1979). · Zbl 0426.16005
[35] A. G. Grigoryan, ”Endomorphism rings of modules over small preadditive categories,” Dokl. Akad. Nauk ArmSSR,67, No. 4, 216–220 (1978).
[36] A. G. Grigoryan, ”Endomorphism rings of modules over small preadditive categories,” Mat. Issled., No. 62, 38–56 (1981). · Zbl 0462.18003
[37] S. Ya. Grinshpon, ”Primary Abelian groups with isomorphic endomorphism groups,” Mat. Zametki,14, No. 5, 733–740 (1973).
[38] S. Ya. Grinshpon, ”On the structure of fully invariant subgroups of torsion-free Abelian groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 56–92.
[39] V. S. Drobotenko and é. S. Drobotenko, ”Automorphisms of the full linear group over a commutative completely primary ring,” in: Materials of the First Regional Conference of Young Carpatho-Ukrainian Scholars, in Honor of the 50th Anniversary of the Formation of the USSR, Mathematical Sciences Section, Uzhgorod Univ., Uzhgorod (1972), pp. 130- 138.
[40] V. S. Drobotenko, é. S. Drobotenko, and E. Ya. Pogorilyak, ”Automorphisms of linear groups over commutative rings with the minimal condition,” Usp. Mat. Nauk,28, No. 6, 205–206 (1973).
[41] V. S. Drobotenko and E. Ya. Pogorilyak, ”Automorphisms of the full linear group over a noncommutative semilocal ring,” Usp. Mat. Nauk,32, No. 3, 157–158 (1977).
[42] V. S. Drobotenko and E. Ya. Pogorilyak, ”Automorphisms of the general and special twodimensional linear groups over local rings,” Uzhgorod Univ., Uzhgorod (1981) (VINITI No. 2740).
[43] Yu. A. Drozd and V. V. Kirichenko, Finite-Dimensional Algebras [in Russian], Vishcha Shkola, Kiev (1980). · Zbl 0469.16001
[44] N. I. Dubrovin, ”Chain domains,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 2, 51–54 (1980). · Zbl 0432.16001
[45] N. I. Dubrovin, ”On chain rings,” Usp. Mat. Nauk,37, No. 4, 139–140 (1982). · Zbl 0509.16017
[46] A. V. Zhotikashvili, ”On the equivalence of categories of affine modules,” Mat. Zametki,24, No. 4, 475–486 (1978).
[47] A. G. Zavadskii and V. V. Kirichenko, ”Torsion-free modules over prime rings,” J. Sov. Math.,11, No. 4 (1979).
[48] A. E. Zalesskii, ”Linear groups,” Usp. Mat. Nauk,36, No. 5, 57–107 (1981).
[49] A. E. Zalesskii, ”Linear groups,” Itogi Nauk. Tekh., Ser. Alg. Topol. Geom., VINITI,22 (1983), pp. 135–182.
[50] A. E. Zalesskii and O. M. Neroslavskii, ”There exist simple Noetherian rings with zerodivisors but with no idempotents,” Commun. Algebra,5, No. 3, 231–244 (1977). · Zbl 0352.16011
[51] A. V. Ivanov, ”Abelian groups with self-injective endomorphism rings and with endomorphism rings with the annihilator condition,” in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 93–109. · Zbl 0565.20038
[52] A. V. Ivanov, Isomorphisms of Classical Groups over Integral Rings [Russian translation], Mir, Moscow (1980).
[53] A. é. Iozapavichyus, ”Invariant submodules of a Hermitian module,” Usp. Mat. Nauk,30, No. 6, 171–172 (1975).
[54] K. Kaarli, ”Near-rings generated by endomorphisms of certain groups,” Uch. Zap. Tartus. Univ., No. 464/22, 3–12 (1978). · Zbl 0407.16021
[55] F. Kasch, Modules and Rings [Russian translation], Mir, Moscow (1981). · Zbl 0527.16001
[56] A. I. Kashu, ”Morita contexts and torsions of modules,” Mat. Zametki,28, No. 4, 491–499 (1980). · Zbl 0463.16019
[57] A. I. Kashu, ”Jans torsions and ideal torsions in Morita contexts,” Mat. Issled., No. 62, 65–75 (1981). · Zbl 0462.16020
[58] E. Sh. Kerer, ”The endomorphism ring of a finitely generated module over a principal ideal ring,” Vestn. Kharkov. Univ., No. 119, Mat. Mekh. No. 40, 67–75 (1975).
[59] I. B. Kozhukhov, ”Semigroup chain rings,” Usp. Mat. Nauk,29, No. 1, 169–170 (1974).
[60] I. B. Kozhukhov, ”Semigroup chain rings and their generalizations,” Moscow Institute of Electrical Engineering, Moscow (1978) (VINITI No. 1862-79).
[61] S. F. Kozhukhov, ”Torsion-free Abelian groups of finite rank with cyclic automorphism groups,” Tomsk Univ. (1977) (VINITI No. 3464-77).
[62] S. F. Kozhukhov, ”Abelian groups without nilpotent endomorphisms,” in: Abelian Groups and Modules [in Russian], Tomsk (1979), pp. 87–94.
[63] S. F. Kozhukhov, ”Torsion-free Abelian groups with finite automorphism groups,” Editorial Board of Siberian Mathematical Journal, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1980) (VINITI No. 4930-80).
[64] S. F. Kozhukhov, ”Regularly complete Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 14–19 (1980). · Zbl 0465.20051
[65] P. M. Cohn, Free Rings and Their Relations, Academic Press, London-New York (1971). · Zbl 0232.16003
[66] A. A. Kravchenko, ”On the minimal number of generators of the lattice of subspaces of a finite-dimensional linear space,” J. Sov. Math.,27, No. 4 (1984). · Zbl 0552.15001
[67] P. A. Krylov, ”Radicals of endomorphism rings of torsion-free Abelian groups of finite rank,” in: Materials of the 4th Scientific Conference on Mathematics and Mechanics, Vol. 1, Tomsk Univ. (1974), pp. 116–117.
[68] P. A. Krylov, ”Radicals of endomorphism rings of torsion-free Abelian groups,” Mat. Sb.,95, No. 2, 214–228 (1974).
[69] P. A. Krylov, ”On the semisimplicity of endomorphism rings of torsion-free Abelian groups,” in: Groups and Modules [in Russian], Tomsk (1976), pp. 23–27.
[70] P. A. Krylov, ”Radicals of endomorphism rings of separable torsion-free Abelian groups,” in: Groups and Modules [in Russian], Tomsk (1976), pp. 27–34.
[71] P. A. Krylov, ”Sums of automorphisms of Abelian groups and the Jacobson radical of the endomorphism ring,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 56–66 (1976).
[72] P. A. Krylov, ”Torsion-free Abelian groups with cyclic p-basic subgroups,” Mat. Zametki,20, No. 6, 805–813 (1976). · Zbl 0353.20039
[73] P. A. Krylov, ”Pure subgroups of the group of p-adic integers,” in: Abelian Groups and Modules [in Russian], Tomsk (1979), pp. 122–126.
[74] P. A. Krylov, ”Torsion-free Abelian groups and their endomorphism rings,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 26–33 (1979). · Zbl 0476.20031
[75] P. A. Krylov, ”On torsion-free Abelian groups,” in: Materials of the 7th Regional Conference on Mathematics and Mechanics, Tomsk, November 17–19, 1981, Algebra Section, Tomsk (1981), pp. 21–34.
[76] P. A. Krylov and A. M. Sebel’din, ”On the determinability of a torsion-free Abelian group from its endomorphism ring,” in: Materials of the 4th Scientific Conference on Mathematics and Mechanics, Vol. 1, Tomsk Univ. (1974), p. 117 (Correction to an abstract in RZhMat, 1975, No. 4, p. 36).
[77] G. Ch. Kurinnoi, ”On the lattice of submodules of a module with three free generators over a completely primary uniserial ring,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 6, 491–492 (1977).
[78] A. L. Libikh, ”Inverse semigroups of local automorphisms of Abelian groups,” in: Studies in Algebra [in Russian], No. 3, Saratov Univ. (1973), pp. 25–33.
[79] V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, ”Modules,” J. Sov. Math.,23, No. 6 (1983). · Zbl 0519.16001
[80] O. V. Mel’nikov, ”Automorphism groups of compact totally disconnected Abelian groups,” Dokl. Akad. Nauk BSSR,16, No. 9, 777–780 (1972).
[81] O. V. Mel’nikov, ”Automorphism groups of compact totally disconnected Abelian groups,” Dokl. Akad. Nauk BSSR,19, No. 2, 101–104 (1975).
[82] Yu. I. Merzlyakov, ”Linear groups,” in: Algebra, Topology, Geometry, 1970, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow (1971), pp. 75–110.
[83] Yu. I. Merzlyakov, ”Automorphisms of two-dimensional congruence groups,” Algebra Logika,12, No. 4, 468–477 (1973). · Zbl 0289.20025
[84] Yu. I. Merzlyakov, ”A survey of recent results on automorphisms of classical groups,” in: Automorphisms of Classical Groups [Russian translation], Mir, Moscow (1976), pp. 250–259.
[85] Yu. I. Merzlyakov, ”Linear groups,” J. Sov. Math.,14, No. 1 (1980). · Zbl 0446.20032
[86] Yu. I. Merzlyakov, ”The theory of isomorphisms of classical groups, 1976–1980,” in: Isomorphisms of Classical Groups over Integral Rings, Mir, Moscow (1980), Appendix 1, pp. 252–258.
[87] Yu. I. Merzlyakov, Rational Groups [in Russian], Nauka, Moscow (1980). · Zbl 0518.20032
[88] A. V. Mikhalev, ”Special structure spaces of rings,” Dokl. Akad. Nauk SSSR,150, No. 7, 259–261 (1963). · Zbl 0145.26401
[89] A. V. Mikhalev, ”Endomorphism rings of modules and lattices of submodules,” J. Sov. Math.,5, No. 6 (1976). · Zbl 0375.16001
[90] A. V. Mikhalev and L. A. Skornyakov, ”Modules,” in: Algebra, Topology, Geometry, 1968, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow (1970), pp. 57–100.
[91] A. V. Mikhalev and L. A. Skornyakov (eds.), ”Modules,” Preprint, Siberian Branch of the Institute of Mathematics, Academy of Sciences of the USSR, Novosibirsk (1973) (in four parts).
[92] A. P. Mishina, ”Automorphisms and endomorphisms of Abelian groups,” Vestn. Mosk. Univ. Mat. Mekh., No. 4, 39–43 (1962). · Zbl 0122.27601
[93] A. P. Mishina, ”Abelian groups,” in: Algebra, Topology, Geometry, 1965, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow (1967). · Zbl 0605.20052
[94] A. P. Mishina, ”Automorphisms and endomorphisms of Abelian groups,” Vestn. Mosk. Univ. Mat. Mekh., No. 1, 62–66 (1972). · Zbl 0236.20040
[95] A. P. Mishina, ”Abelian groups,” J. Sov. Math.,2, No. 3 (1974). · Zbl 0605.20052
[96] A. P. Mishina, ”Abelian groups,” J. Sov. Math.,18, No. 5 (1982). · Zbl 0605.20052
[97] L. G. Mustafaev, ”Semigroups of continuous linear transformation. I,” in: Special Questions in Algebra and Topology [in Russian], Baku (1980), pp. 56–60.
[98] L. G. Mustafaev, ”Semigroups of continuous linear transformations. II,” in: Special Questions in Algebra and Topology [in Russian], Baku (1980), pp. 61–65.
[99] N. A. Nachev, ”Incidence rings,” Vestn. Mosk. Univ. Mat. Mekh., No. 1, 36–42 (1977). · Zbl 0412.06001
[100] G. A. Noskov, ”Automorphisms of the groupGL n (0) when dim Max(0),” Mat. Zametki,17, No. 2, 285–291 (1975). · Zbl 0316.20034
[101] V. M. Petechuk, ”Automorphisms of SLn and GLn over certain local rings,” Mat. Zametki,28, No. 2, 187–204 (1980). · Zbl 0437.20037
[102] V. M. Petechuk, ”Automorphisms of matrix groups over commutative rings,” Mat. Sb.,117, No. 4, 534–547 (1982). · Zbl 0496.20026
[103] V. M. Petechuk, ”Automorphisms of SL3(K) and GL3(K),” Mat. Zametki,31, No. 5, 657–668 (1982). · Zbl 0492.20030
[104] E. Ya. Pogorilyak, ”Automorphisms of the group of second-order matrices over a commutative local ring,” in: Mathematical Collection [in Russian], Naukova Dumka, Kiev (1976), pp. 76–80.
[105] E. Ya. Pogorilyak and V. S. Drobotenko, ”Nonstandard automorphisms of GL2(K) over a local ring K,” in: Proceedings of the 28th Scientific Conference of the Professional and Teaching Faculty of Uzhgorod Univ., Mathematics Section, Uzhgorod Univ. (1974), pp. 201–206.
[106] E. Ya. Pogorilyak, V. S. Drobotenko, and é. S. Drobotenko, ”Automorphisms of the full inear group over a commutative semilocal ring,” in: Proceedings of the 28th Scientific Conference of the Professional and Teaching Faculty of Uzhgorod Univ., Mathematics Section, Uzhgorod Univ. (1974), pp. 187–200.
[107] P. Puusemp, ”On the determinability of a periodic Abelian group from its endomorphism semigroup,” Izv. Akad. Nauk éstSSR, Fiz. Mat.,29, No. 3, 241–245 (1980). · Zbl 0449.20057
[108] P. Puusemp, ”On the determinability of a periodic Abelian group from its endomorphism semigroup in the class of all periodic Abelian groups,” Izv. Akad. Nauk éstSSR, Fiz. Mat.,29, No. 3, 246–253 (1980). · Zbl 0449.20058
[109] V. S. Pyatkov, ”Fully invariant submodules of certain classes of modules,” Kemerovo Univ. (1979) (VINITI No. 2790-79).
[110] V. S. Pyatkov, ”Abelian groups as modules over their endomorphism ring,” Kemerovo Univ. (1979) (VINITI No. 20-80).
[111] V. B. Repnitskii, ”Arithmetic modules,” Mat. Sb.,110, No. 1, 150–157 (1979).
[112] S. K. Rossoshek, ”Correctness of rings and modules,” in: Materials of the 4th Scientific Conference on Mathematics and Mechanics, Vol. 1, Tomsk Univ. (1974), pp. 120–121.
[113] A. M. Sebel’din, ”Complete direct sums of torsion-free Abelian groups of rank 1 with isomorphic endomorphism groups ro rings,” Mat. Zametki,14, No. 6, 867–878 (1973).
[114] A. M. Sebel’din, ”Some of automorphisms of completely decomposable torsion-free Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 85–92 (1975).
[115] A. M. Sebel’din, ”Complete direct sums of torsion-free Abelian groups of rank 1 with isomorphic endomorphism groups or rings. II,” in: Abelian Groups and Modules [in Russian], Tomsk (1979), pp. 151–156.
[116] A. M. Sebel’din, ”Torsion-free Abelian groups with isomorphic endomorphism rings,” in: Abelian Groups and Modules [in Russian], Tomsk (1979), pp. 157–162.
[117] A. M. Sebel’din, ”Determinability of a nonreduced torsion-free Abelian group from its endomorphism group,” in: Abelian Groups and Modules [in Russian], Tomsk (1980), pp. 102–108.
[118] L. A. Skornyakov, ”Projective mappings of modules,” Izv. Akad. Nauk SSSR, Ser. Mat., No. 4, 511–520 (1960). · Zbl 0094.15603
[119] L. A. Skornyakov, ”Rings,” in: Algebra, Topology, 1962, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow, pp. 59–79.
[120] L. A. Skornyakov, ”Modules,” in: Algebra, Topology, 1962, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow (1963), pp. 80–89.
[121] L. A. Skornyakov, ”Modules,” in: Algebra, Topology, Geometry, 1965, Itogi Nauki, VINITI, Akad. Nauk SSSR, Moscow (1967), pp. 181–216.
[122] L. A. Skornyakov and A. V. Mikhalev, in: Algebra, Topology, Geometry, Vol. 14, Itogi Nauki i ekhniki, VINITI, Akad. Nauk SSSR, Moscow (1976), pp. 57–190.
[123] A. G. Solonina, ”On the determinability of modules over complete discrete valuation rings from indecomposable idempotent endomorphisms,” V. I. Lenin Moscow State Pedagogic Institute, Moscow (1975) (VINITI No. 2660-75).
[124] A. G. Solonina, ”On the determinability of p-adic modules by automorphism groups,” V. I. Lenin Moscow State Pedagogic Institute, Moscow (1975) (VINITI No. 2647-75).
[125] V. P. Soltan, ”Finite-dimensional linear operators with the same invariant subspaces,” in: Mathematical Studies, Vol. 8, No. 4(30), Shtiintsa, Kishinev (1973), pp. 80–100.
[126] Yu. V. Sosnovskii, ”On the general theory of isomorphisms of linear groups,” in: Isomorphisms of Classical Groups over Integral Rings [Russian translation], Mir, Moscow (1980), pp. 259–268.
[127] D. A. Suprunenko, Matrix Groups [in Russian], Nauka, Moscow (1972). · Zbl 0281.20038
[128] A. A. Suslin, ”The structure of the special linear group over polynomial rings,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 2, 235–252 (1977). · Zbl 0354.13009
[129] G. M. Tomanov, ”Generalized group identities in linear groups,” Dokl. Akad. Nauk BSSR,26, No. 1, 9–12 (1982). · Zbl 0478.20030
[130] A. A. Tuganbaev, ”Modules that are nearly injective,” Usp. Mat. Nauk,32, No. 2, 233–234 (1977). · Zbl 0351.16017
[131] A. A. Tuganbaev, ”The structure of modules that are nearly injective,” Sib. Mat. Zh.,18, No. 4, 89–898 (1977).
[132] A. A. Tuganbaev, ”Quasiinjective and semiinjective modules,” Vestn. Mosk. Univ., Mat. Mekh., No. 2, 61–64 (1977). · Zbl 0356.16008
[133] A. A. Tuganbaev, ”Modules over hereditary Noetherian prime rings,” Usp. Mat. Nauk,32, No. 4, 267–268 (1977). · Zbl 0372.16017
[134] A. A. Tuganbaev, ”Structure of modules that are nearly protective,” Mat. Sb.,106, No. 4, 554–565 (1978).
[135] A. A. Tuganbaev, ”Pseudoinjective modules and extension of automorphisms,” Proceedings of I. G. Petrovskii’s Seminar, Moscow State Univ., No. 4, 241–248 (1978). · Zbl 0416.16007
[136] A. A. Tuganbaev, ”Characterizations of rings using semiinjective and semiprojective modules,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 3, 48–51 (1979). · Zbl 0423.16016
[137] A. A. Tuganbaev, ”Semiprojective modules,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 43–47 (1979). · Zbl 0442.16019
[138] A. A. Tuganbaev, ”Rings over which each module is a direct sum of distributive modules,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 61–64 (1980). · Zbl 0428.16032
[139] A. A. Tuganbaev, ”Distributive Noetherian rings,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 2, 30–34 (1980). · Zbl 0436.16011
[140] A. A. Tuganbaev, ”Rings for which all quotient rings are semiinjective,” Usp. Mat. Nauk,35, No. 2, 223–224 (1980). · Zbl 0428.16027
[141] A. A. Tuganbaev, ”On quasiprojective modules,” Sib. Mat. Zh.,21, No. 3, 177–183 (1980). · Zbl 0446.16021
[142] A. A. Tuganbaev, ”Semiprojective modules,” Sib. Mat. Zh.,21, No. 5, 109–113 (1980). · Zbl 0451.16017
[143] A. A. Tuganbaev, ”Distributive modules,” Usp. Mat. Nauk,35, No. 5, 245–246 (1980). · Zbl 0451.16018
[144] A. A. Tuganbaev, ”On self-injective rings,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 71–74 (1980). · Zbl 0466.16019
[145] A. A. Tuganbaev, ”Rings over which all cyclic modules are semiinjective,” Proceedings Of I. G. Petrovskii’s Seminar, Moscow State Univ., No. 6, 257–262 (1981).
[146] A. A. Tuganbaev, ”Integrally closed rings,” Mat. Sb.,115, No. 4, 544–559 (1981). · Zbl 0473.16002
[147] A. A. Tuganbaev, ”Semiinjective rings,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 50–53 (1981). · Zbl 0486.16016
[148] A. A. Tuganbaev, ”Integrally closed Noetherian rings,” Usp. Mat. Nauk,36, No. 5, 195–196 (1981). · Zbl 0473.16003
[149] A. A. Tuganbaev, ”On semiinjective modules,” in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 175–180.
[150] A. A. Tuganbaev, ”Rings for which all quotient rings are right semiinjective,” in: Abelian Groups and Modules [in Russian], Tomsk (1981), pp. 166–174.
[151] A. A. Tuganbaev, ”Semiinjective modules,” Mat. Zametki,31, No. 3, 447–456 (1982).
[152] A. A. Tuganbaev, ”Semiinjective rings,” Usp. Mat. Nauk,37, No. 5, 201–202 (1982).
[153] V. M. Usenko, ”Semigroups of semilinear transformations,” Kharkov Institute of Radio Electronics (1982) (VINITI No. 4391-82).
[154] V. Kh. Farukshin, ”Endomorphisms of torsion-free Abelian groups,” V. I. Lenin Moscow State Pedagogic Institute (1981) (VINITI No. 2579-81).
[155] V. Kh. Farukshin, ” Endomorphisms of torsion-free generalized primary groups,” V. I. Lenin Moscow State Pedagogic Institute (1981) (VINITI No. 3469-81).
[156] V. Kh. Farukshin, ”Endomorphisms of reduced torsion-free generalized primary groups,” Moscow State Pedagogic Institute (1982) (VINITI No. 1821-82).
[157] V. G. Fayans, ”The group of quotients of a semigroup of nonsingular matrices with non- negative entries,” Usp. Mat. Nauk,28, No. 6, 221–222 (1973).
[158] C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], Vols. 1 and 2, Mir, Moscow (1977, 1979).
[159] M. Ya. Finkel’shtein, ”Quasiendomorphism rings,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 3, 44–47 (1979).
[160] Yu. M. Firsov, ”Endomorphisms of subgroups of free Abelian groups,” Uch. Zap. Mosk. Gos. Pedagog. Inst. im. V. I. Lenin.,375, 90–99 (1971).
[161] E. A. Khalezov, ”Automorphisms of matrix semigroups,” Uch. Zap. Ivanov. Gos. Pedagog. Inst.,106, 136–138 (1972).
[162] T. N. Sharapova, ”Elementary inverse subsemigroups of the semigroup of linear transformations,” in: Studies in Algebra [in Russian], No. 4, Saratov Univ. (1974), pp. 115–118.
[163] T. N. Sharapova, ”Congruences on semigroups of linear operators,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 1, 17–19 (1979).
[164] T. N. Sharapova, ”Congruences on a semigroup of linear transformations,” All-Union Correspondence Mechanical Engineering Institute, Moscow (1979) (VINITI No. 3265-79).
[165] A. Z. Shlyafer, ”Modules with finite automorphism groups over integral domains,” in: Materials of the Regional Conference on Mathematics and Mechanics, Tomsk, November 17– 19, 1981, Algebra Section, Tomsk (1981), pp. 52–54.
[166] L. B. Shneperman, ”Maximal inverse subsemigroups of the semigroup of linear transforma- tions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 93–100 (1974). · Zbl 0328.20060
[167] J. Abdeljaouad and M. Abdeljaouad, ”Automorphismes de l’anneau des endomorphismes triangulaires d’un espace vectoriel de dimension dénombrable,” Bull. Soc. Math. Belg.,28, No. 4, 297–311 (1976). · Zbl 0422.16013
[168] H. Achkar, ”Sur les anneaux arithmétiques,” C. R. Acad. Sci.,A278, No. 5, 307–309 (1974). · Zbl 0287.16018
[169] H. Achkar, ”Sur les propriétés des anneaux arithmétiques à gauche,” C. R. Acad. Sci.,284, No. 17, A993-A995 (1977). · Zbl 0348.16003
[170] H. Achkar, ”Anneaux arithmétiques à gauche,” C. R. Acad. Sci.,AB286, No. 20, A871-A873 (1978). · Zbl 0375.16003
[171] H. Achkar, ”Anneaux arithmétiques à gauche: propriétés de transfert,” C. R. Acad. Sci.,288, No. 11, A583-A586 (1979). · Zbl 0407.16005
[172] J. Ashan, ”On {\(\pi\)}-injective modules,” Tamkang J. Math.,10, No. 2, 223–229 (1979).
[173] J. Ashan, ”Modules over qc-rings,” Stud. Sci. Math. Hung.,9, Nos. 3–4, 321–325 (1974).
[174] S. Alamelu, ”On commutativity of endomorphism rings of ideals,” Proc. Am. Math. Soc.,37, No. 1, 29–31 (1973). · Zbl 0228.13002
[175] S. Alamelu, ”Commutativity of endomorphism rings of ideals. II,” Proc. Am. Math. Soc.,55, No. 2, 271–274 (1976). · Zbl 0339.13013
[176] T. Albu and C. Nastasescu, ”Modules arithmétiques,” Acta Math. Acad. Sci. Hung.,25, Nos. 3–4, 299–311 (1974). · Zbl 0298.13010
[177] J. Alev, ”Dualité dans les algèbres enveloppantes et les anneaux de groups,” C. R. Acad. Sci.,AB287, No. 6, A387-A390 (1978). · Zbl 0391.16019
[178] G. Almkvist, ”Endomorphisms of finitely generated projective modules over a commutative ring,” Ark. Mat.,11, No. 2, 263–301 (1973). · Zbl 0278.13005
[179] G. Almkvist, ”The Grothendieck group of the category of endomorphisms,” J. Algebra,28, No. 3, 375–378 (1974). · Zbl 0281.18012
[180] J. L. Alperin, ”Diagrams for modules,” J. Pure Appl. Algebra,16, No. 2, 111–119 (1980). · Zbl 0425.16027
[181] D. D. Anderson, ”A remark on the lattice of ideals of a Prufer domain,” Pac. J. Math.,57, No. 2, 323–324 (1975). · Zbl 0287.13003
[182] D. D. Anderson, ”Multiplication ideals, multiplication rings, and the ring R(X),” Can. J. Math.,28, No. 4, 760–768 (1976). · Zbl 0343.13009
[183] D. D. Anderson, ”Some remarks on multiplication ideals,” Math. Jpn.,25, No. 4, 463–469 (1980). · Zbl 0446.13001
[184] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York (1974). · Zbl 0301.16001
[185] H. W. K. Angad-Gaur, ”The homological dimension of a torsion-free Abelian group of finite rank as a module over its ring of endomorphisms,” Rend. Sem. Mat. Univ. Padova,57, 299–309 (1977(1978)). · Zbl 0404.20045
[186] Anh Pham Ngoc, ”Duality over Noetherian rings with a Morita duality,” J. Algebra,75, No. 1, 275–285 (1982). · Zbl 0486.16015
[187] J. Archer and R. Hart, ”Linear groups and projective modules over skew polynomial rings,” Bull. London Math. Soc.,12, No. 5, 377–382 (1980). · Zbl 0418.16005
[188] F. Ariband, ”Un ideal maximal de l’anneau des endomorphismes d’un espace vectoriel de dimension infinie,” in: Lecture Notes in Mathematics, Vol. 740 (1979), pp. 184–189.
[189] E. P. Armendariz, ”Modules with Artinian prime factors,” Proc. Am. Math. Soc.,78, No. 3, 311–314 (1980). · Zbl 0438.16022
[190] E. P. Armendariz, J. W. Fisher, and R. L. Snider, ”On injective and surjective endomorphismes of finitely generated modules,” Commun. Algebra,6, No. 7, 659–672 (1978). · Zbl 0383.16014
[191] D. M. Arnold, ”Pure subgroups of finite rank completely decomposable groups,” in: Lecture Notes in Mathematics, Vol. 874 (1981), pp. 1–30.
[192] D. M. Arnold, R. Hunter, and F. Richman, ”Global Azumaya theorems in additive categories,” J. Pure Appl. Algebra,16, No. 3, 223–242 (1980). · Zbl 0443.18014
[193] D. M. Arnold and E. L. Lady, ”Endomorphism rings and direct sums of torsion-free Abelian groups,” Trans. Am. Math. Soc.,211, 225–237 (1975). · Zbl 0329.20033
[194] D. M. Arnold and C. E. Murley, ”Abelian groups A, such that Hom(A,–) preserves direct sums of copies of A,” Pac. J. Math.,56, No. 1, 7–20 (1975). · Zbl 0337.13010
[195] D. M. Arnold, R. S. Pierce, J. D. Reid, C. Vinsonhaler, and W. Wickless, ”Torsion-free Abelian groups of finite rank protective as modules over their endomorphism rings,” J. Algebra,71, No. 1, 1–10 (1981). · Zbl 0464.20039
[196] B. L. Auslander, ”Central separable algebras which are locally endomorphism rings of free modules,” Proc. Am. Math. Soc.,30, No. 3, 395–404 (1971). · Zbl 0223.13001
[197] G. Azumaya, ”Some aspects of Fuller’s theorem,” in: Lecture Notes in Mathematics, Vol. 700 (1979), pp. 34–35. · Zbl 0405.16022
[198] R. Baer, ”Direct decompositions into primary components,” Algebra Univ.,3, 16–50 (1973). · Zbl 0364.06009
[199] S. Balcerzyk, ”On traces of exterior powers of a sum of two endomorphisms of a projective module,” Colloq. Math.,23, No. 2, 203–211 (1971). · Zbl 0239.13009
[200] W. BÄni, ”über Ringe, welche dicht in ihrer Modulkategorie sind,” Manuscr. Math.,10, No. 4, 379–394 (1973). · Zbl 0265.16017
[201] W. BÄni, ”Inner product spaces of infinite dimension; on the lattice method,” Arch. Math.,33, No. 4, 338–347 (1979). · Zbl 0411.15014
[202] A. D. Barnard, ”Distributive extensions of modules,” J. Algebra,70, No. 2, 303–315 (1981). · Zbl 0468.13012
[203] A. D. Barnard, ”Multiplication modules,” J. Algebra,71, No. 1, 174–178 (1981). · Zbl 0468.13011
[204] C. Bartolone and F. DiFranco, ”A remark on the projectivities of the projective line over a commutative ring,” Math. Z.,169, No. 1, 23–29 (1979). · Zbl 0413.51006
[205] S. Bazzoni and C. Metelli, ”On Abelian torsion-free separable groups and their endomorphism rings,” Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 259–285. · Zbl 0424.20050
[206] J. A. Beachy, ”Bicommutators of cofaithful, fully divisible modules: corrigendum,” Can. J. Math.,26, No. 1, 256 (1974). · Zbl 0275.16025
[207] J. A. Beachy, ”T-faithful subcategories and localization,” Trans. Am. Math. Soc.,195, No. 468, 61–79 (1974). · Zbl 0293.18018
[208] I. Beck, ”On modules whose endomorphism ring is local,” Israel J. Math.,29, No. 4, 393–407 (1978). · Zbl 0376.16003
[209] I. Beck, ”An independence structure of indecomposable modules,” Ark. Mat.,16, No. 2, 171–178 (1978). · Zbl 0395.16021
[210] E.-A. Behrens, ”Distributiv darstellbare Ringe,” Math. Z.,73, No. 5, 409–432 (1960). · Zbl 0103.26705
[211] E.-A. Behrens, ”Distributiv darstellbare Ringe. II,” Math. Z.,76, No. 4, 367–384 (1961). · Zbl 0121.04004
[212] E.-A. Behrens, Ring Theory, Academic Press, New York-London (1972).
[213] E.-A. Behrens, ” Noncommutative arithmetic rings,” in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 67–71. · Zbl 0266.16027
[214] K. Benabdallah and A. Birtz, ”Sur une famille de groupes Abéliens superdécomposable,” Can. Math. Bull.,24, No. 2, 213–218 (1981). · Zbl 0463.20038
[215] G. M. Bergman, ”Boolean rings of projection maps,” J. London Math. Soc.,4, No. 4, 593–598 (1972). · Zbl 0205.03805
[216] C. Berline, ”Categoricité en 0 du groupe linéaire d’un anneau de Boole,” C. R. Acad. Sci.,280, No. 12, A753-A754 (1975). · Zbl 0299.02058
[217] J. Bichot, ”Modules continus,” Publ. Dép. Math.,8, No. 1, 55–61 (1971). · Zbl 0272.16013
[218] W. D. Blair, ”An endomorphism ring which is not Ore,” Proc. Am. Math. Soc.,44, No. 2, 275–277 (1974). · Zbl 0289.16002
[219] W. D. Blair, ”Quotient rings of algebras which are module finite and protective,” Acta Sci. Math.,36, Nos. 3–4, 265–266 (1974). · Zbl 0267.16002
[220] P. Bland and S. Riley, ”Density relative to a torsion theory,” Proc. Am. Math. Soc.,82, No. 4, 527–532 (1981). · Zbl 0474.16018
[221] M. B. Boisen, Jr. and R. B. Sheldon, ”A note on prearithmetical rings,” Acta Math. Acad. Sci. Hung.,28, Nos. 3–4, 257–259 (1976). · Zbl 0343.13010
[222] L. Bonami, ”Morita-equivalent rings are isomorphic,” Arch. Math.,34, No. 2, 100–110 (1980). · Zbl 0418.16023
[223] R. T. Botto-Mura, H. H. Brungs, and J. L. Fisher, ”Chain rings and valuation semigroups,” Commun. Algebra,5, No. 14, 1529–1547 (1977). · Zbl 0368.06012
[224] R. A. Bowshell and P. Schultz, ”Unital rings whose additive endomorphisms commute,” Math. Ann.,228, No. 3, 197–214 (1977). · Zbl 0336.20040
[225] J. Brandt, ”Characteristic submodules,” J. London Math. Soc.,25, No. 1, 35–38 (1982). · Zbl 0488.20014
[226] S. Brenner, ”Decomposition properties of some small diagrams of modules,” Symp. Math. Ist. Naz. Alta Mat. Conv. Nov.-Dic. 1972, Vol. 13, London-New York (1974), pp. 127–141.
[227] H. H. Brungs, ”Multiplikative Idealtheorie in nicht kommutativen Ringen,” Mitt. Math. Sem. Giessen, No. 1 10 (1974). · Zbl 0285.16004
[228] H. H. Brungs, ”Rings with a distributive lattice of right ideals,” J. Algebra,40, No. 2, 392–400 (1976). · Zbl 0346.16006
[229] H. H. Brungs, ”Semigroups associated with right chain rings,” Commun. Algebra,8, No. 1, 79–85 (1980). · Zbl 0423.20056
[230] H. H. Brungs and G. Törner, ”Chain rings and prime ideals,” Arch. Math.,27, No. 3, 253–260 (1976). · Zbl 0333.16018
[231] H. H. Brungs and G. Törner, ”Embedding right chain rings in chain rings,” Can. J. Math.,30, No. 5, 1079–1086 (1978). · Zbl 0409.16027
[232] W. D. Burgess and R. Raphael, ”Sur deux notions de complétude dans les anneaux semipremiers,” C. R. Acad. Sci.,283, No. 13, A927-A929 (1976). · Zbl 0342.16008
[233] S. Burris and H. Werner, ”Remarks on Boolean products,” Algebra Univ.,10, No. 3, 333–344 (1980). · Zbl 0454.08007
[234] M. C. R. Butler, ”On locally free torsion-free rings of finite rank,” J. London Math. Soc.,43, No. 2, 297–300 (1968). · Zbl 0155.07202
[235] M. C. R. Butler, ”A Galois-theoretic description of certain quasiendomorphism rings,” Symp. Math. Ist. Naz. Alta Mat. Conv. Nov.–Dic. 1972, Vol. 13, London-New York (1974), pp. 143–151.
[236] H. S. Butts and W. Smith, ”Prüfer rings,” Math. Z.,95, No. 3, 196–211 (1967). · Zbl 0153.37003
[237] G. G. Calugareanu, ”Some remarks about mutual pseudocomplements in lattices,” Mathematica (RSR),22, No. 2, 237–239 (1980). · Zbl 0477.06006
[238] V. P. Camillo, ”A note on semihereditary rings,” Arch. Math.,24, No. 2, 142–143 (1973). · Zbl 0277.13013
[239] V. P. Camillo, ”Semihereditary polynomial rings,” Proc. Am. Math. Soc.,45, No. 2, 173–174 (1974). · Zbl 0294.13014
[240] V. P. Camillo, ”Distributive modules,” J. Algebra,36, No. 1, 16–25 (1975). · Zbl 0308.16015
[241] V. P. Camillo and K. R. Fuller, ”Rings whose faithful modules are flat over their endomorphism rings,” Arch. Math.,27, No. 5, 522–525 (1976). · Zbl 0336.16019
[242] V. P. Camillo and J. M. Zelmanowitz, ”Dimension modules,” Pac. J. Math.,91, No. 2, 249–261 (1980). · Zbl 0473.16017
[243] J. F. Carlson, ”Endotrivial modules over (p,p)-groups,” Illinois J. Math.,24, No. 2, 287–295 (1980). · Zbl 0431.20006
[244] F. Castagna, ”Endomorphisms of countable direct sums of torsion-complete groups,” Acta Math. Acad. Sci. Hung.,23, Nos. 1–2, 45–50 (1972). · Zbl 0247.20058
[245] G. Cauchon, ”Commutant des modules longueur finie sur certaines algèbres filtrées,” in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 10–18. · Zbl 0443.16001
[246] F. A. Cezus, K. D. Magill, Jr., and S. Subbiah, ”Maximal ideals of semigroups of endomorphisms,” Bull. Austral. Math. Soc.,12, No. 2, 211–225 (1975). · Zbl 0298.20064
[247] A. W. Chatters, ”Three examples concerning the Ore condition in Noetherian rings,” Proc. Edinburgh Math. Soc.,23, No. 2, 187–192 (1980). · Zbl 0448.16002
[248] A. W. Chatters and S. M. Khuri, ”Endomorphism rings of modules over nonsingular CS-rings,” J. London Math. Soc.,21, No. 3, 434–444 (1980). · Zbl 0432.16017
[249] K. Chiba, ”A note on Morita-equivalence of polynomial rings,” Math. J. Okayama Univ.,19, No. 2, 121–122 (1977). · Zbl 0374.16023
[250] L. G. Chouinard, B. R. Hardig, and T. S. Shores, ”Arithmetical and semihereditary semigroup rings,” Commun. Algebra,8, No. 17, 1593–1652 (1980). · Zbl 0439.20046
[251] P. M. Cohn, ”The semilarity reduction of matrices over a skew field,” Math. Z.,132, No. 2, 151–163 (1973). · Zbl 0248.15010
[252] P. M. Cohn, Skew Field Constructions, London Math. Society Lecture Note Series, No. 27 (1977). · Zbl 0355.16009
[253] R. R. Colby and K. R. Fuller, ”Modules over diserial rings,” Commun. Algebra,9, No. 5, 511–532 (1981). · Zbl 0507.16017
[254] S. B. Conlon, ”Some remarks on the Krull-Schmidt theorem,” in: Proc. Symp. Pure Math., Vol. 21, Representation Theory of Finite Groups and Related Topics, American Mathematical Society, Providence, R.I. (1971), pp. 29–31.
[255] J. B. Conway and P. R. Halmos, ”Finite-dimensional points of continuity of Lat,” Linear Algebra Appl.31, 93–102 (1980). · Zbl 0435.15005
[256] E. F. Cornelius, Jr., ”Characterization of a class of torsion-free groups in terms of endomorphisms,” Pac. J. Math.,79, No. 2, 341–355 (1978); correction: Pac. J. Math.,85, No. 2, 501 (1979). · Zbl 0404.20046
[257] A. L. S. Corner, ”On endomorphism rings of primary Abelian groups. II,” Q. J. Math.,27, No. 105, 5–13 (1976). · Zbl 0326.20047
[258] S. H. Cox, Jr., ”Commutative endomorphism rings,” Pac. J. Math.,45, No. 1, 87–91 (1973). · Zbl 0254.13014
[259] S. H. Cox, Jr. and D. E. Rush, ”Endomorphisms of finite rank flat modules,” Duke Math. J.,39, No. 2, 323–326 (1972). · Zbl 0238.13012
[260] J. H. Cozzens, ”Maximal orders and reflexive modules,” Trans. Am. Math. Soc.,219, No. 492, 323–336 (1976). · Zbl 0334.16009
[261] J. H. Cozzens and C. Faith, Simple Noetherian Rings, Cambridge Univ. Press (1975). · Zbl 0314.16001
[262] R. S. Cunningham, E. A. Rutter, Jr., and D. R. Turnidge, ”Rings of quotients of endomorphism rings of projective modules,” Pac. J. Math.,41, No. 3, 647–668 (1972). · Zbl 0215.37903
[263] M. Curzio, ”Un problema di massimo in teoria dei moduli,” Rend. Sem. Mat. Fiz. Milano,42, 111–118 (1972). · Zbl 0338.13010
[264] R. F. Damiano, ”Coflat rings and modules,” Pac. J. Math.,81, No. 2, 349–369 (1979). · Zbl 0415.16021
[265] J. Dauns, ”Simple modules and centralizers,” Trans. Am. Math. Soc.,166, 457–477 (1972). · Zbl 0237.16022
[266] T. M. K. Davison, ”Distributive homomorphisms of rings and modules,” J. Reine Angew. Math.,271, 28–34 (1974). · Zbl 0297.13003
[267] E. G. Dawley, ”A note on abelian p-groups and their endomorphism rings,” in: Black Mathematicians and Their Works, Dorrance, Ardmore (1980), pp. 137–138.
[268] R. J. H. Dawlings, ”Products of idempotents in the semigroup of singular endomorphisms of a finite-dimensional vector space,” Proc. R. Soc. Edinburgh,91, Nos. 1–2, 123–133 (1981). · Zbl 0512.20049
[269] R. J. H. Dawlings, ”Sets of idempotents that generate the semigroup of singular endomorphisms of a finite-dimensional vector space,” Proc. Edinburgh Math. Soc.,25, No. 2, 133–139 (1982). · Zbl 0479.20034
[270] J. A. Deddens and P. A. Fillmore, ”Reflexive linear transformations,” Linear Algebra Appl.,10, No. 1, 89–93 (1975). · Zbl 0301.15011
[271] G. Desale and W. K. Nicholson, ”Endoprimitive rings,” J. Algebra,70, No. 2, 548–560 (1981). · Zbl 0463.16005
[272] V. K. Deshpande, ”Completions of Noetherian hereditary prime rings,” Pac. J. Math.,90, No. 2, 285–297 (1980). · Zbl 0455.16001
[273] V. K. Deshpande and E. H. Feller, ”Endomorphism rings of essential extensions of a Noetherian module,” Israel J. Math.,17, No. 1, 46–49 (1974). · Zbl 0285.16023
[274] G. D’Este, ”Sui gruppi abeliani il cui anello degli endomorfismi è numerabile e non discreto nella topologia finita,” Atti Ist. Veneto Sci. Lett. Arti. Cl. Sci. Mat. Natur.,134, 239–243 (1975–1976).
[275] G. D’Este, ”Abelian groups with anti-isomorphic endomorphism rings,” Rend. Sem. Mat. Univ. Padova,60, 55–75 (1978). · Zbl 0444.20046
[276] G. D’Este, ”A theorem on the endomorphism ring of reduced torsion-free Abelian groups and some applications,” Ann. Mat. Pura Appl.,116, 381–392 (1978). · Zbl 0383.20036
[277] G. D’Esté, ”On topological rings which are endomorphism rings of reduced torsion-free Abelian groups,” Q. J. Math.,32, No. 127, 303–311 (1981). · Zbl 0483.16035
[278] V. Dlab and C. M. Ringel, ”Balanced rings,” in: Lecture Notes in Mathematics, Vol. 246 (1972), pp. 73–143. · Zbl 0247.16013
[279] V. Dlab and C. M. Ringel, ”Balanced local rings with commutative residue fields,” Bull. Am. Math. Soc.,78, No. 5, 771–774 (1972). · Zbl 0271.16011
[280] V. Dlab and C. M. Ringel, ”The representations of tame hereditary algebras,” in: Representation Theory of Algebras, Proc. Philadelphia Conference, New York-Basel (1978), pp. 329–353.
[281] V. Dlab and C. M. Ringel, ”Perfect elements in the free modular lattices,” Math. Ann.,247, No. 2, 95–100 (1980). · Zbl 0443.06005
[282] Yu. Drozd, ”Minors and theorems of reduction,” in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 173–176.
[283] M. Dugas, ”Fast freie Abelsche Gruppen mit Endomorphismenring Z,” J. Algebra,71, No. 2, 314–321 (1981). · Zbl 0495.20024
[284] M. H. Dull, ”Automorphisms of the two-dimensional linear groups over integral domains,” Am. J. Math.,96, No. 1, 1–40 (1974). · Zbl 0308.20037
[285] G. Ehrlich, ”Units and one-sided units in regular rings,” Trans. Am. Math. Soc.,216, 81–90 (1976). · Zbl 0298.16012
[286] S. Elliger, ”PrÄradikale und Endomorphismenringe von Moduln,” Aequat. Math.,10, No. 1, 118–119 (1974).
[287] S. Elliger, ”PrÄradikale und Endomorphismenringe von Moduln,” Aequat. Math.,12, No. 1, 84–93 (1975). · Zbl 0297.16020
[288] E. G. Evans, ”Krull-Schmidt theorem and cancellation over local rings,” Pac. J. Math.,46, No. 1, 115–121 (1973). · Zbl 0272.13006
[289] A. Facchini, ”Rings whose finitely generated torsion modules in sense of Dickson decompose into direct sums of cyclic submodules,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur.,68, No. 1, 13–21 (1980). · Zbl 0469.13005
[290] J. N. Fadyn, ”The projectivity of Ext(T, A) as a module over E(T),” Pac. J. Math.,85, No. 2, 383–392 (1979). · Zbl 0401.16011
[291] C. Faith, ”A correspondence theorem for projective modules and the structure of simple Noetherian rings,” in: Symp. Mat. Ist. Naz. Alta Mat., Vol. 8, London-New York (1972), pp. 309–345. · Zbl 0259.16011
[292] C. Faith, ”Acorrespondence theorem for projective modules and the structure of simple Noetherian rings: addendum,” in: Symp. Math. Conv., 1971–1972, Vol. 10, London-New York (1972), pp. 471–472.
[293] C. Faith, ”On the structure of indecomposable injective modules,” Commun. Algebra,2, No. 6, 559–571 (1974). · Zbl 0294.16013
[294] K. Faltings, ”Primare Abelsche Gruppen mit SemidualitÄt,” Arch. Math.,26, No. 1, 14–19 (1975). · Zbl 0303.20037
[295] H. K. Farahat, ”Homological dimension and Abelian groups,” in: Lecture Notes in Mathematics, Vol. 616 (1977), pp. 379–383. · Zbl 0366.20040
[296] D. R. Farkas and R. Snider, ”Group algebras whose simple modules are injective,” Trans. Am. Math. Soc.,194, 241–248 (1974). · Zbl 0287.16004
[297] D. R. Farkas and R. Snider, ”Commuting rings of simple A(k)-modules,” J. Austral. Math. Soc.,A31, No. 2, 142–145 (1981). · Zbl 0471.16004
[298] R. B. Feinberg, ”Faithful distributive modules over incidence algebras,” Pac. J. Math.,65, No. 1, 35–45 (1976). · Zbl 0317.16014
[299] R. B. Feinberg, ”Characterization of incidence algebras,” Discrete Math.,17, No. 1, 47–70 (1977). · Zbl 0361.16013
[300] J. W. Fisher, ”Nil subrings of endomorphism rings of modules,” Proc. Am. Math. Soc., No. 1, 75–78 (1972). · Zbl 0241.16006
[301] P. Fleury, ”Hollow modules and local endomorphism rings,” Pac. J. Math.,53, No. 2, 379–385 (1974). · Zbl 0301.16005
[302] R. Fourneau, ”Caractérisations de certains sous-lattis du lattis des convexes équilibrés radialement fermés,” Bull. Soc. R. Sci. Liege,50, Nos. 9–10, 310–312 (1981).
[303] R. Freese, ”Projective geometries as projective modular lattices,” Trans. Am. Math. Soc.,251, 329–342 (1979). · Zbl 0415.06006
[304] R. Fritsch and G. Wolff, ”Strukturen für die Menge der affinen Endomorphismen eines Modules bzw. eines affinen Raumes,” in: Mitt. Math. Sem. Giessen, No. 130 (1978), pp. 93–106. · Zbl 0383.51002
[305] L. Fuchs, ”The cancellation property for modules,” in: Lecture Notes in Mathematics, Vol. 246 (1972), pp. 191–212. · Zbl 0237.16021
[306] L. Fuchs, ”On torsion Abelian groups quasiprojective over their endomorphism rings,” Proc. Am. Math. Soc.,42, No. 1, 13–15 (1974). · Zbl 0279.20044
[307] L. Fuchs, ”Indecomposable Abelian groups of measurable cardinality,” in: Symp. Math. Ist. Naz. Alta Mat. Conv. Nov.-Dic. 1972, Vol. 13, London-New York (1974), pp. 233–244.
[308] H. Fujita, ”Endomorphism rings of reflexive modules over Krull orders,” Osaka J. Math.,17, No. 2, 439–448 (1980). · Zbl 0449.16025
[309] K. R. Fuller, ”Density and equivalence,” J. Algebra,29, No. 3, 528–550 (1974). · Zbl 0306.16020
[310] K. R. Fuller, ”Weakly symmetric rings of distributive module type,” Commun. Algebra5, No. 9, 997–1008 (1977). · Zbl 0372.16010
[311] K. R. Fuller, ”Rings of left invariant module type,” Commun. Algebra,6, No. 2, 153–167 (1978). · Zbl 0366.16009
[312] K. R. Fuller, ”On a generalization of serial rings,” in: Representation Theory of Algebras, Proc. Philadelphia Conference, New York-Basel (1978), pp. 353–367.
[313] K. R. Fuller, ”Biserial rings,” in: Lecture Notes in Mathematics, Vol. 734 (1979), pp. 64–90. · Zbl 0411.16023
[314] K. R. Fuller, ”On a generalization of serial rings. II,” Commun. Algebra,8, No. 7, 635–661 (1980). · Zbl 0429.16023
[315] K. R. Fuller and J. Haack, ”Rings with quivers that are trees,” Pac. J. Math.,76, No. 2, 371–379 (1978). · Zbl 0389.16011
[316] K. R. Fuller and J. Haack, ”Duality for semigroup rings,” J. Pure Appl. Algebra,22, No. 2, 113–119 (1981). · Zbl 0466.16018
[317] K. R. Fuller and H. Hullinger, ”Rings with finiteness conditions and their categories of functors,” J. Algebra,55, No. 1, 94–105 (1978). · Zbl 0395.16026
[318] B. J. Gardner, ”Some aspects of T-nilpotence,” Pac. J. Math.,53, No. 1, 117–130 (1974). · Zbl 0253.16009
[319] R. Göbel, ”Darstellung von Ringen als Endomorphismenringe,” Arch. Math.,35, No. 4, 338–350 (1980). · Zbl 0473.16021
[320] V. K. Goel and S. K. Jain, ”{\(\pi\)}-Injective modules and rings whose cyclics are {\(\pi\)}-injective,” Commun. Algebra,6, No. 1, 59–73 (1978). · Zbl 0368.16010
[321] A. Goldie and L. W. Small, ”A note on rings of endomorphisms,” J. Algebra,24, No. 2, 392–395 (1973). · Zbl 0269.16015
[322] B. Goldsmith, ”Endomorphism rings of torsion-free modules over a complete discrete valuation ring,” J. London Math. Soc.,18, No. 3, 464–471 (1978). · Zbl 0394.16024
[323] K. R. Goodearl, Ring Theory. Nonsingular Rings and Modules, Marcel Dekker, New York-Basel (1976).
[324] K. R. Goodearl, ”Power-cancellation of groups and modules,” Pac. J. Math.,64, No. 2, 287–411 (1976). · Zbl 0308.16016
[325] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
[326] K. R. Goodearl and A. K. Boyle, ”Dimension theory for nonsingular injective modules,” Mem. Am. Math. Soc., Vol. 177 (1976). · Zbl 0335.16024
[327] R. Gordon, ”Nilpotency in endomorphism rings,” Proc. Am. Math. Soc.,45, No. 1, 38–40 (1974). · Zbl 0294.16005
[328] R. Gordon and E. L. Green, ”A representation theory for Noetherian rings,” J. Algebra,39, No. 1, 100–130 (1976). · Zbl 0344.16021
[329] R. Gordon and J. C. Robson, ”Semiprime rings with Krull dimension are Goldie,” J. Algebra,25, No. 3, 519–521 (1973). · Zbl 0257.16004
[330] W. Graves and S. Molnar, ”Incidence algebras as algebras of endomorphisms,” Bull. Am. Math. Soc.,79, No. 4, 815–820 (1973). · Zbl 0272.06003
[331] E. L. Green, ”On the decomposability of amalgamated sums,” J. Pure Appl. Algebra,14, No. 3, 259–272 (1979). · Zbl 0423.18003
[332] J. A. Green, ”Endomorphism rings of some modular representations,” Var. Publ. Ser. Mat. Inst. Aarhus Univ., No. 29, 1–7 (1978).
[333] H. Gross, ”Isomorphisms between lattices of linear subspaces which are induced by isometries,” J. Algebra,49, No. 2, 537–546 (1977). · Zbl 0387.15018
[334] H. Gross, ”The lattice method in the theory of quadratic spaces of nondenumerable dimensions,” J. Algebra,75, No. 1, 23–42 (1982). · Zbl 0493.15019
[335] L. Gruson, ”Simple coherent functors,” in: Lecture Notes in Mathematics, Vol. 488 (1975), pp. 156–159. · Zbl 0318.18012
[336] A. K. Gupta and K. Varadarajan, ”Modules over endomorphism rings,” Commun. Algebra,8, No. 14, 1291–1333 (1980). · Zbl 0442.16021
[337] W. H. Gustafson, ”On maximal commutative algebras of linear transformations,” J. Algebra,42, No. 2, 557–563 (1976). · Zbl 0335.13009
[338] J. K. Haack, ”Self-duality and serial rings,” J. Algebra,59, No. 2, 345–363 (1979). · Zbl 0444.16012
[339] J. K. Haack, ”Incidence rings with self-duality,” Proc. Am. Math. Soc.,78, No. 2, 165–169 (1980). · Zbl 0438.16014
[340] L. Haapasalo, ”Von Vektorraumisometrien induzierte Verbandsisomorphismen zwischen nicht orthostabilen und nicht distributiven VektorraumverbÄnden,” Ann. Acad. Sci. Fenn., Ser. Al Diss., No. 37 (1981). · Zbl 0473.15012
[341] M. Hacque, ”Quelques remarques sur la notion de socle,” Commun. Algebra,10, No. 10, 1003–1025 (1982). · Zbl 0495.16030
[342] A. J. Hahn, ”Isomorphisms of the integral classical groups and their congruence subgroups,” Am. J. Math.,97, No. 4, 865–887 (1975). · Zbl 0405.20044
[343] A. J. Hahn, ”Category equivalences and linear groups over rings,” J. Algebra,77, No. 2, 505–543 (1982). · Zbl 0489.20040
[344] I. Halperin and P. Rosenthal, ”Burnside’s theorem on algebras of matrices,” Am. Math. Month.,87, No. 10, 810 (1980). · Zbl 0452.15002
[345] D. Handelman, Prüfer domains and Baer rings,” Arch. Math.,29, No. 3, 241–251 (1977). · Zbl 0374.13014
[346] D. Handelman, ”Free rank n+1 dense subgroups of Rn and their endomorphisms,” J. Funct. Anal.,46, No. 1, 1–27 (1982). · Zbl 0489.20044
[347] A. Hanna and F. M. Yaqub, ”Duality in modules over principal ideal domains,” Acta Math. Acad. Sci. Hung.,22, Nos. 1–2, 203–206 (1971). · Zbl 0241.16015
[348] J. Hannah, ”Countability in regular self-injective rings,” Q. J. Math.,31, No. 123, 315–327 (1980). · Zbl 0438.16012
[349] T. A. Hannula, ”The Morita context and the construction of QF-rings,” in: Lecture Notes in Mathematics, Vol. 353 (1973), pp. 113–130. · Zbl 0275.16016
[350] F. Hansen, ”Dreiecks-Darstellung von Endomorphismenringen injektiver Moduln,” J. Reine Angew. Math.,302, 206–220 (1978). · Zbl 0377.16001
[351] G. W. Hansen and D. W. Robinson, ”On the existence of generalized inverses,” Linear Algebra Appl.,8, No. 2, 95–104 (1974). · Zbl 0281.15001
[352] D. Happel and C. M. Ringel, ”Construction of tilted algebras,” in: Lecture Notes in Mathematics, Vol. 903 (1981), pp. 125–144.
[353] M. Harada, ”On the exchange property in a direct sum of indecomposable modules,” Osaka J. Math.,12, No. 3, 719–736 (1975). · Zbl 0325.16019
[354] M. Harada, ”A ring-theoretical proof in a factor category of indecomposable modules,” J. Math. Soc. Jpn.,28, No. 1, 160–167 (1976). · Zbl 0313.16032
[355] M. Harada, ”A note on hollow modules,” Rev. Union. Mat. Argent.,28, Nos. 3–4, 186–194 (1977–1978). · Zbl 0397.16027
[356] M. Harada and T. Ishii, ”On endomorphism rings of Noetherian quasiinjective modules,” Osaka J. Math.,9, No. 2, 217–223 (1972). · Zbl 0263.16015
[357] B. R. Hardy and T. S. Shores, ”Arithmetical semigroup rings,” Can. J. Math.,32, No. 6, 1361–1371 (1980). · Zbl 0411.20045
[358] N. Hart, ”Determining groups from endomorphism rings for Abelian groups modulo bounded subgroups,” Acta Math. Acad. Sci. Hung.,22, Nos. 1–2, 154–162 (1971). · Zbl 0262.20065
[359] G. Hauger, ”Aufsteigende Kettenbedingung für zyklische Moduln und perfekte Endomorphismenringe,” Acta Math. Acad. Sci. Hung.,28, Nos. 3–4, 275–278 (1976). · Zbl 0336.16026
[360] G. Hauger and W. Zimmermann, ”Quasi-Frobenius Moduln,” Arch. Math.,24, No. 4, 379–386 (1973). · Zbl 0271.16007
[361] G. Hauger and W. Zimmermann, ”Dichte Ringe,” Math. Ann.,210, No. 1, 1–6 (1974). · Zbl 0288.16011
[362] G. I. Hauptfleisch, ”Torsion-free Abelian groups with isomorphic endomorphism rings,” Arch. Math.,24, No. 3, 269–273 (1973). · Zbl 0283.20035
[363] J. Hausen, ”Structural relations between general linear groups and automorphism groups of Abelian p-groups,” Proc. London Math. Soc.,28, No. 4, 614–630 (1974). · Zbl 0288.20074
[364] J. Hausen, ”On automorphism groups and endomorphism rings of Abelian p-groups,” Trans. Am. Math. Soc.,210, 123–128 (1975). · Zbl 0365.20058
[365] J. Hausen, ”How automorphism groups reveal Ulm invariants,” J. Algebra,44, No. 1, 9–28 (1977). · Zbl 0345.20054
[366] J. Hausen, ”The Jacobson radical of endomorphism rings of totally protective groups of finite type,” J. Reine Angew. Math.,292, 19–24 (1977). · Zbl 0352.20027
[367] J. Hausen, ”The Jacobson radical of some endomorphism rings,” in: Lecture Notes in Mathematics, Vol. 616 (1977), pp. 332–336. · Zbl 0377.20046
[368] J. Hausen, ”Quasiregular ideals of some endomorphism rings,” Illinois J. Math.,21, No. 4, 845–851 (1977). · Zbl 0377.20045
[369] J. Hausen, ”Radicals in endomorphism rings of primary Abelian groups,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 63–66. · Zbl 0418.20047
[370] J. Hausen and J. A. Johnson, ”Characterization of the primary Abelian groups, bounded modulo the divisible subgroup, by the radical of their endomorphism rings,” Arch. Math.,29, No. 6, 566–570 (1977). · Zbl 0383.20035
[371] J. Hausen and J. A. Johnson, ”Ideals and radicals of some endomorphism rings,” Pac. J. Math.,74, No. 2, 365–372 (1978). · Zbl 0378.20042
[372] J. Hausen and J. A. Johnson, ”Separability of sufficiently protective p-groups as reflected in their endomorphism rings,” J. Algebra,69, No. 2, 270–280 (1981). · Zbl 0464.20042
[373] C. Herrmann, ”On the equational theory of submodule lattices,” in: Proceedings of the University of Houston Lattice Theory Conference (Houston, Texas, 1973), Department of Mathematics, Univ. of Houston, Houston, Texas (1973), pp. 105–118. · Zbl 0313.06004
[374] C. Herrmann, ”On a condition sufficient for the distributivity of lattices of linear subspaces,” Arch. Math.,33, No. 3, 235–238 (1979). · Zbl 0411.06006
[375] C. Herrmann and A. P. Huhn, ”Zum Begriff der Charakteristik modularer VerbÄnde,” Math. Z.,144, No. 3, 185–194 (1975). · Zbl 0316.06006
[376] C. Herrmann and A. P. Huhn, ”Zum Wortproblem für freie UntermodulverbÄnde,” Arch. Math.,26, No. 5, 449–453 (1975). · Zbl 0343.06012
[377] C. Herrmann and A. P. Huhn, ”Lattices of normal subgroups which are generated by frames,” in: Lattice Theory, Proc. Colloq., Szeged, 1974, Amsterdam (1976), pp. 97–136. · Zbl 0384.06010
[378] D. A. Hill, Endomorphism rings of hereditary modules,” Arch. Math.,28, No. 1, 45–50 (1977). · Zbl 0356.16006
[379] Y. Hirano, ”On Fitting’s lemma,” Hiroshima Math. J.,9, No. 3, 623–626 (1979). · Zbl 0431.16010
[380] Y. Hirano, ”Regular modules and V-modules,” Hiroshima Math. J.,11, No. 1, 125–142 (1981). · Zbl 0459.16009
[381] M. Huber and R. B. Warfield, Jr., ”Homomorphisms between Cartesian powers of an Abelian group,” in: Lecture Notes in Mathematics, Vol. 874 (1981), pp. 202–227. · Zbl 0484.20024
[382] A. Hudry, ”Sur les modules primaires de O. Goldman,” C. R. Acad. Sci.,274, No. 25, A1772-A1774 (1972). · Zbl 0235.16002
[383] A. Hudry, ”Sur un problème de C. Faith,” J. Algebra,34, No. 3, 365–374 (1975). · Zbl 0306.16006
[384] H. L. Hullinger, ”Stable equivalence and rings whose modules are a direct sum of finitely generated modules,” J. Pure Appl. Algebra,16, No. 3, 265–273 (1980). · Zbl 0441.16028
[385] G. Hutchinson, ”The representation of lattices by modules,” Bull. Am. Math. Soc.,79, No. 1, 172–176 (1973). · Zbl 0272.06011
[386] G. Hutchinson, ”On the representation of lattices by modules,” Trans. Am. Math. Soc.,209, No. 482, 311–351 (1975). · Zbl 0328.06002
[387] G. Hutchinson, ”A duality principle for lattices and categories of modules,” J. Pure Appl. Algebra,10, No. 2, 115–119 (1977). · Zbl 0366.18009
[388] G. Hutchinson and G. Czédli, ”A test for identities satisfied in lattices of submodules,” Algebra Univ.,8, No. 3, 269–309 (1978). · Zbl 0384.06009
[389] J. J. Hutchinson, ”Quotient full linear rings,” Proc. Am. Math. Soc.,28, No. 2, 375–378 (1971). · Zbl 0216.06804
[390] J. J. Hutchinson, ”The completion of a Morita context,” Commun. Algebra,8, No. 8, 717–742 (1980). · Zbl 0441.16023
[391] J. J. Hutchinson and D. R. Turnidge, ”Morita equivalent quotient rings,” Commun. Algebra,4, No. 7, 669–675 (1976). · Zbl 0343.16004
[392] J. J. Hutchinson and J. Zelmanowitz, ”Quotient rings of endomorphism rings of modules with zero singular submodules,” Proc. Am. Math. Soc.,35, No. 1, 16–20 (1972). · Zbl 0264.16001
[393] J. J. Hutchinson and J. Zelmanowitz, ”Subdirect sum decompositions of endomorphism rings,” Pac. J. Math.,47, No. 1, 129–134 (1973). · Zbl 0269.16016
[394] S. Ikehata, ”On Morita equivalence in ring extensions,” Math. J. Okayama Univ.,18, No. 1, 73–79 (1975). · Zbl 0342.16026
[395] R. S. Irving, ”Rings with subexponential growth and irreducible representations,” Proc. Am. Math. Soc.,72, No. 3, 445–450 (1978). · Zbl 0372.16019
[396] R. S. Irving, ”Generic flatness and the Nullstellensatz for Ore extensions,” Commun. Algebra,7, No. 3, 259–277 (1979). · Zbl 0402.16002
[397] R. S. Irving, ”Noetherian algebras and the Nullstellensatz,” in: Lecture Notes in Mathematics, Vol. 740 (1979), pp. 80–87. · Zbl 0423.16003
[398] I. M. Isaacs, ”Automorphisms of matrix algebras over commutative rings,” Linear Algebra Appl.,31, 215–231 (1980). · Zbl 0434.16015
[399] T. Ishii, ”On locally direct summands of modules,” Osaka J. Math.,12, No. 2, 473–482 (1975). · Zbl 0313.16031
[400] Y. Iwanaga, ”The Fh-condition and double centralizer condition,” Sci. Reports Tokyo Kyoiku Daigaku, Sec. A,12, Nos. 313–328, 16–24 (1973).
[401] T. Izawa, ”A module whose double centralizer is semi-primary QF-3,” Reports Fac. Sci. Shizuoka Univ.,10, 3–8 (1975). · Zbl 0357.16012
[402] T. Izawa, ”Maximal quotient rings of endomorphism rings of E(RR)-torsion-free generators,” Can. J. Math.,33, No. 3, 585–605 (1981). · Zbl 0441.16022
[403] M. Jaegermann, ” Morita contexts and radicals,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,20, No. 8, 619–623 (1972). · Zbl 0242.16005
[404] M. Jaegermann, ”Normal radicals of rings of additive categories,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,22, No. 9, 883–885 (1974). · Zbl 0294.16004
[405] M. Jaegermann, ”Normal radicals of endomorphism rings of free and projective modules,” Fund. Math.,86, No. 3, 237–250 (1975). · Zbl 0295.16002
[406] M. Jaegermann, ”Normal radicals,” Fund. Math.,95, No. 3, 147–155 (1977). · Zbl 0354.16002
[407] R. K. Jain, ”Generalized multiplication modules,” Riv. Mat. Univ. Parma,7, 461–472 (1981). · Zbl 0504.13007
[408] D. G. James, ”Protective geometry for orthogonal groups,” J. Reine Angew. Math., No. 319, 104–117 (1980). · Zbl 0425.20042
[409] D. G. James and B. Weisfeiler, ”On the geometry of unitary groups,” J. Algebra,63, No. 2, 514–540 (1980). · Zbl 0428.14023
[410] A. V. Jategaonkar, ”Endomorphism rings of torsionless modules,” Trans. Am. Math. Soc.,161, 457–466 (1971). · Zbl 0224.16005
[411] A. V. Jategaonkar, ”Morita duality and Noetherian rings,” J. Algebra,69, No. 2, 358–371 (1981). · Zbl 0456.16022
[412] C. U. Jensen, ”On characterisations of Prüfer rings,” Math. Scand.,13, No. 1, 90–98 (1963). · Zbl 0131.27703
[413] C. U. Jensen, ”A remark on arithmetical rings,” Proc. Am. Math. Soc.,15, No. 6, 951–954 (1964). · Zbl 0135.07902
[414] C. U. Jensen, ”A remark on flat and projective modules,” Can. J. Math.,18, No. 5, 943–949 (1966). · Zbl 0144.02302
[415] C. U. Jensen, ”A remark on the distributive law for an ideal in a commutative ring,” Proc. Glasgow Math. Asso.,7, No. 4, 193–198 (1966). · Zbl 0145.27501
[416] C. U. Jensen, ”Arithmetical rings,” Acta Math. Acad. Sci. Hung.,17, Nos. 1–2, 115–123 (1966). · Zbl 0141.03502
[417] L. Jeremy, ”Anneaux engendrés par leurs idempotents. Quasi-continuité de MI,” C. R. Acad. Sci.,276, No. 24, A1541-A1543 (1973). · Zbl 0256.16018
[418] L. Jeremy, ”Modules et anneaux quasicontinus,” Can. Math. Bull.,17, No. 2, 217–228 (1974). · Zbl 0301.16024
[419] M. I. Jinnah, ”A note on PG-modules,” Math. Scand.,37, No. 1, 27–28 (1975). · Zbl 0332.13010
[420] S. JØndrup, ”Indecomposable modules,” in: Ring Theory, Proc. Antwerp Conference, 1978, New York-Basel (1979), pp. 97–104.
[421] A. Joseph, ”A generalization of Quillen’s lemma and its application to the Weyl algebras,” Israel J. Math.,28, No. 3, 177–192 (1977). · Zbl 0366.17006
[422] P. Jothilingam, ”A note on a theorem of M. Auslander,” J. London Math. Soc.,9, No. 2, 302–304 (1974). · Zbl 0296.13006
[423] M. I. Kabenjuk, ”Some topologies on an Abelian group related to the ring of its endomorphisms,” in: Topology, 4th Colloq., Budapest, 1978, Vol. 2, Amsterdam (1980), pp. 705–712.
[424] U. S. Kahlon, ”Problem of Krull-Schmidt-Azumaya-Matlis,” J. Indian Math. Soc.,35, Nos. 1–4, 255–261 (1971). · Zbl 0267.16013
[425] H. Kanbara, ”Note on Krull-Remak-Schmidt-Azumaya’s theorem,” Osaka J. Math.,9, No. 3, 409–413 (1972). · Zbl 0251.16019
[426] F. Kasch and B. Pareigis, ”Einfache Untermoduln von Kogeneratoren,” in: Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. 1972, München (1973), pp. 45–76. · Zbl 0273.16024
[427] T. Kato, ”U-distinguished modules,” J. Algebra,25, No. 1, 15–24 (1973). · Zbl 0252.16006
[428] T. Kato, ”Duality between colocalization and localization,” J. Algebra,55, No. 2, 351–374 (1978). · Zbl 0403.16023
[429] T. Kato and K. Ohtake, ”Morita contexts and equivalences,” J. Algebra,61, No. 2, 360–366 (1979). · Zbl 0427.16031
[430] E. Katz and S. A. Morris, ”On endomorphisms of Abelian topological groups,” Proc. Am. Math. Soc.,85, No. 2, 181–183 (1982). · Zbl 0465.22002
[431] Y. Kawada, ”A note on cogenerators in the category of modules,” Proc. Jpn. Acad.,48, No. 7, 470–473 (1972). · Zbl 0252.16013
[432] Y. Kawada, ”On dominant modules and dominant rings,” in: Proc. 10th Symposium on Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 62–82.
[433] Y. Kuwada, ”On dominant modules and dominant rings,” J. Algebra,56, No. 2, 409–435 (1979). · Zbl 0403.16017
[434] H. A. Keller, ”On the lattice of all closed subspaces of a Hermitian space,” Pac. J. Math., No. 1, 105–110 (1980). · Zbl 0439.46015
[435] O. Kerner, ”A remark on Morita duality,” Commun. Algebra,4, No. 12, 1127–1131 (1976). · Zbl 0344.16012
[436] J. W. Kerr, ”An example of a Goldie ring whose matrix rings are not Goldie,” J. Algebra,61, No. 2, 590–592 (1979). · Zbl 0441.16014
[437] T. P. Kezlan, ”On K-primitive rings,” Proc. Am. Math. Soc.,74, No. 1, 24–28 (1979). · Zbl 0408.16005
[438] S. A. Khabbaz and E. H. Toubassi, ”The module structure of Ext (F, T) over the endomorphism ring of T,” Pac. J. Math.,54, No. 1, 169–176 (1974). · Zbl 0293.20043
[439] S. A. Khabbaz and E. H. Toubassi, ”Ext (A, T) as a module over End (T),” Proc. Am. Math. Soc.,48, No. 2, 269–275 (1975).
[440] S. M. Khuri, ”Baer endomorphism rings and closure operators,” Can. J. Math.,30, No. 5, 1070–1078 (1978). · Zbl 0363.16010
[441] S. M. Khuri, ”Endomorphism rings and lattice isomorphisms,” J. Algebra,56, No. 2, 401–408 (1979). · Zbl 0399.16014
[442] S. M. Khuri, ”Modules with Baer, CS or left Utumi endomorphism rings,” in: Ring Theory, Proc. Antwerp Conference, 1978, New York-Basel (1979), pp. 705–710.
[443] S. M. Khuri, ”Endomorphism rings of nonsingular modules,” Ann. Sci. Math. Québec,49, No. 2, 145–152 (1980). · Zbl 0451.16021
[444] S. M. Khuri, ”Modules whose endomorphism rings have isomorphic maximal left and right quotient rings,” Proc. Am. Math. Soc.,85, No. 2, 161–162 (1982). · Zbl 0501.16003
[445] K. H. Kim and F. W. Roush, ”Reflexive lattices of subspaces,” Proc. Am. Math. Soc.,78, No. 1, 17–18 (1980). · Zbl 0448.06011
[446] I. Kirkwood, ”The isomorphism semigroup of a periodic Abelian group,” Proc. R. Soc. Edinburgh,A86, Nos. 1–2, 43–52 (1980). · Zbl 0437.20050
[447] Y. Kitamura, ”A remark on the endomorphism ring theorem of quasi-Frobenius extensions,” Bull. Tokyo Gakugei Univ.,27, No. 4, 55–59 (1975). · Zbl 0379.16004
[448] Y. Kitamura, ”Quasi-Frobenius extensions with Morita duality,” J. Algebra,73, No. 2, 275–286 (1981). · Zbl 0469.16010
[449] A. Kovacs, ”Homomorphisms of matrix rings into matrix rings,” Pac. J. Math.,49, No. 1, 161–170 (1973). · Zbl 0275.16019
[450] R. Kuebler and J. D. Reid, ”On a paper of Fred Richman and Elbert A. Walker (Math. Z.,89, 77–81 (1965)),” Rocky Mount. J. Math.,5, No. 4, 585–592 (1975). · Zbl 0333.20047
[451] M. Kulkarni, ”Fundamental theorem of projective geometry over a commutative ring,” Indian J. Pure Appl. Math.,11, No. 12, 1561–1565 (1980). · Zbl 0512.51001
[452] A. Kurka, ”Equationally compact algebras with bases of different cardinalities,” Algebra Univ.,12, No. 3, 399–401 (1981). · Zbl 0466.08003
[453] J. Lambek, Torsion Theories, Additive Semantics and Rings of Quotients, Springer-Verlag, Berlin (1971). · Zbl 0213.31601
[454] J. Lambek, ”Bicommutators of nice injectives,” J. Algebra,21, No. 1, 60–73 (1972). · Zbl 0233.16001
[455] J. Lambek, ”Localization at epimorphisms and quasiinjectives,” J. Algebra,38, No. 1, 163–181 (1976). · Zbl 0327.18012
[456] J. Lambek, ”Remarks on localization and duality,” in: Ring Theory, Proc. Antwerp Conference, 1978, New York-Basel (1979), pp. 711–728.
[457] D. Latsis, ”Localization dans les anneaux duos,” C. R. Acad. Sci.,282, No. 24, A1403-A1406 (1976). · Zbl 0328.16004
[458] J. Lawrence, ”A note on the density theorem,” Can. Math. Bull.,24, No. 2, 249 (1981). · Zbl 0463.16008
[459] D. A. Lawver, ”On the commutativity and generalized regularity of {\(\Xi\)} (G),” Acta Math. Acad. Sci. Hung.,24, Nos. 1–2, 107–112 (1973). · Zbl 0261.20047
[460] D. A. Lawver, ”Abelian groups in which endomorphic images are fully invariant,” J. Algebra,29, No. 2, 232–245 (1974). · Zbl 0292.20052
[461] Lee Sin-Min, ”On the constructions of local and arithmetic rings,” Acta Math. Acad. Sci. Hung.,32, Nos. 1–2, 31–34 (1978). · Zbl 0393.16004
[462] L. C. A. van Leeuwen, ”Remarks on endomorphism rings of torsion-free Abelian groups,” Acta Sci. Math.,32, Nos. 3–4, 345–350 (1971). · Zbl 0232.20109
[463] L. C. A. van Leeuwen, ”On the endomorphisms and quasi-endomorphisms of torsion-free groups,” Beitr. Algebra Geom. Wiss. Beitr. M.-Luther-Univ. Halle Wittenberg, No. 4, 15–22 (1975). · Zbl 0336.20039
[464] K. Leichtweiss, ”über den projektiven Abschluss affiner VerbÄnde,” Abh. Math. Sem. Univ. Hamburg,42, Nov., 53–71 (1974). · Zbl 0302.06017
[465] C. Lemaire, ”Sous-modules purs et sommantes directes,” Can. J. Math.,25, No. 6, 1159–1164 (1973). · Zbl 0275.13012
[466] B. Lemonnier, ”AB5* et la dualité de Morita,” C. R. Acad. Sci.,289, No. 2, A47-A50 (1979). · Zbl 0415.16020
[467] H. Lenzing, ”Direct sums of projective modules as direct summands of their direct product,” Commun. Algebra,4, No. 7, 681–691 (1976). · Zbl 0342.16024
[468] U. Leron, ”Matrix methods in decompositions of modules,” Linear Algebra Appl.,31, 159–171 (1980). · Zbl 0442.16027
[469] Leu Hsi-Muh, ”The ring of quotients of a module endomorphism ring,” Tamkang J. Math.,7, No. 1, 77–86 (1976). · Zbl 0358.16001
[470] W. Liebert, ”Endomorphisn rings of reduced torsion-free modules over complete discrete valuation rings,” Trans. Am. Math. Soc.,169, 347–363 (1972). · Zbl 0282.16016
[471] W. Liebert, ”Endomorphism rings of reduced complete torsion-free modules over complete discrete valuation rings,” Proc. Am. Math. Soc.,36, No. 2, 375–378 (1972). · Zbl 0226.16030
[472] W. Liebert, ”The Jacobson radical of some endomorphism rings,” J. Reine Angew. Math.,262–263, 166–170 (1973). · Zbl 0266.16004
[473] W. Liebert, ”Endomorphism rings of free modules over principal ideal domains,” Duke Math. J.,41, No. 2, 323–328 (1974). · Zbl 0283.16012
[474] W. Liebert, ”One-sided ideals in the endomorphism rings of the complete torsion-free modules and divisible torsion modules over complete discrete valuation rings,” in: Symp. Math. Ist. Naz. Alta Mat. Conv. Nov.-Dic. 1972, Vol. 13, London-New York (1974), pp. 273–298.
[475] W. Liebert, ”Ulm valuations and co-valuations on torsion-complete p-groups,” in: Lecture Notes in Mathematics, Vol. 616 (1977), pp. 337–353. · Zbl 0375.20039
[476] B. V. Limaye and N. B. Limaye, ”Fundamental theorem for the projective line over non-comnutative local rings,” Arch. Math.,28, No. 1, 102–109 (1977). · Zbl 0351.50007
[477] B. V. Limaye and N. B. Limaye, ”The fundamental theorem for the projective line over noncommutative local rings,” Aequat. Math.,16, Nos. 1–2, 187–188 (1977). · Zbl 0371.13018
[478] B. V. Limaye and N. B. Limaye, ”The fundamental theorem for the projective line over commutative rings,” Aequat. Math.,16, No. 3, 275–281 (1977). · Zbl 0371.13018
[479] R. N. S. MacDonald, ”Representable dualities between finitely closed subcategories of modules,” Can. J. Math.,31, No. 3, 465–475 (1979). · Zbl 0428.18010
[480] F. Machala, ”O automorfismech definovanych na okruhu endomorfismu homogenniho totálnĚ rozloŽitelného modulu,” čas. PĚstov. Mat.,96, No. 4, 353–360 (1971).
[481] F. Machala, ”über einige Endomorphismen der additiven Gruppe des Endomorphismenringes eines vollstÄdig reduziblen Moduls,” Mat. Cas.,22, No. 2, 131–140 (1972). · Zbl 0235.16023
[482] F. Machala, ”über Automorphismen des Endomorphismenringes eines Vektorraumes,” čas. PĚstov. Mat.,98, No. 1, 78–86 (1973). · Zbl 0386.16004
[483] F. Machala, ”über Automorphismen eines Annullatorenverbandes gewisser Teilringe im Endomorphismenring eines homogenen vollstÄndig reduziblen Moduls,” Sb. Praci Prirodoved. Fak. Univ. Palackeho v Olomouci,41, 15–26 (1973). · Zbl 0292.16016
[484] F. Machala, ”Projektive Abbildung von Moduln,” Czech. Math. J.,24, No. 1, 26–39 (1974). · Zbl 0308.50012
[485] F. Machala, ”Bemerkungen zu einem Satz von L. A. Skornjakov über proektive Abbildung von Moduln,” Mat. čas.,24, No. 4, 301–306 (1974). · Zbl 0309.16019
[486] F. Machala, ”Homomorphismen von projektiven RÄumen und verallgemeinerte semilineare Abbildungen,” čas. PĚstov. Mat.,100, No. 2, 142–154 (1975). · Zbl 0308.50011
[487] F. Machala, ”Projektive Abbildungen projektiver RÄume mit Homomorphismus,” Czech. Mat. J.,25, No. 2, 214–226 (1975). · Zbl 0328.50019
[488] F. Machala, ”Homomorphismen projektiver RÄume mit Homomorphismus,” Czech. Mat. J.,25, No. 3, 454–474 (1975). · Zbl 0318.50017
[489] A. Mader, ”The fully invariant subgroups of reduced algebraically compact groups,” Publ. Math.,17, Nos. 1–4, 299–306 (1970). · Zbl 0232.20110
[490] R. Makino, ”Balanced conditions for direct sums of serial modules,” Sci. Reports Tokyo Kyoiku Daigaku,12, Nos. 329–346, 181–201 (1974). · Zbl 0316.16021
[491] R. Makino, ”Serial endomorphism rings,” Proc. Jpn. Acad.,51, No. 7, 530–534 (1975). · Zbl 0344.16014
[492] M. Makkai and G. McNulty, ”Universal Horn axiom systems for lattices of submodules,” Algebra Univ.,7, No. 1, 25–31 (1977). · Zbl 0375.06003
[493] H. Marubayashi, ”A note on locally uniform rings and modules,” Proc. Jpn. Acad.,47, No. 1, 11–14 (1971). · Zbl 0232.16006
[494] K. Masaike, ”Endomorphisms of modules over maximal orders,” in: Proc. 10th Symposium on Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 95–98.
[495] K. Masaike, ”Endomorphisms of modules over maximal orders,” Math. J. Okayama Univ.,21, No. 1, 33–40 (1979). · Zbl 0417.16014
[496] C. J. Maxson and K. C. Smith, ”Centralizer near-rings that are endomorphism rings,” Proc. Am. Math. Soc.,80, No. 2, 189–195 (1980). · Zbl 0454.16022
[497] G. Maxwell, ”Representations of algebras with involution,” Can. J. Math.,24, No. 4, 592–597 (1972). · Zbl 0215.48401
[498] W. May, ”Endomorphism rings of Abelian groups with ample divisible subgroups,” Bull. London Math. Soc.,10, No. 3, 270–272 (1978). · Zbl 0402.20042
[499] W. May and E. Toubassi, ”Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky,” J. Algebra,43, No. 1, 1–13 (1976). · Zbl 0353.20041
[500] W. May and E. Toubassi, ”A result on problem 87 of L. Fuchs,” in: Lecture Notes in Mathematics, Vol. 616 (1977), pp. 354–367. · Zbl 0383.20034
[501] M. J. McAsey and P. S. Muhly, ”On projective equivalence of invariant subspace lattices,” Linear Algebra Appl.,43, 167–175 (1982). · Zbl 0484.15002
[502] B. R. McDonald, ”Endomorphism rings of infinitely generated projective modules,” J. Algebra,45, No. 1, 69–82 (1977). · Zbl 0354.16011
[503] B. R. McDonald, Geometric Algebra over Local Rings, Marcel Dekker, New York-Basel (1976).
[504] B. R. McDonald, ”Automorphisms of GLn(R),” Trans. Am. Math. Soc.,246, 155–171 (1978). · Zbl 0402.20035
[505] B. R. McDonald, ”GL2 of rings with many units,” Commun. Algebra,8, No. 9, 869–888 (1980). · Zbl 0436.20031
[506] B. R. McDonald, ”Projectivities over rings with many units,” Commun. Algebra,9, No. 2, 195–204 (1981). · Zbl 0466.51018
[507] B. R. McDonald, ”Aut(GL2(R)) for rings,” Commun. Algebra,9, No. 2, 205–220 (1981). · Zbl 0453.20041
[508] W. Menzel, ”über den Untergruppenverband einer Abelschen Operatorgruppe. Teil II. Distributive undM-VerbÄnde von Untergruppen einer Abelschen Operatorgruppe,” Math. Z.,74, No. 1, 52–65 (1960). · Zbl 0098.25003
[509] W. Menzel, ”Ein Kriterium für die DistributivitÄt des Untergruppenverbandes einer Abelschen Operatorgruppe,” Math. Z.,75, No. 3, 271–276 (1961). · Zbl 0112.26104
[510] C. Metelli ald L. Salce, ”The endomorphism ring of an Abelian torsion-free homogeneous separable group,” Arch. Math.,26, No. 5, 480–485 (1975). · Zbl 0329.20035
[511] H. Michel, ”Nilpotente Endomorphismen von freien abelschen Gruppen,” Publ. Math.,18, Nos. 1–4, 261–272 (1971). · Zbl 0291.20070
[512] R. W. Miller, Endomorphism rings of the finitely generated projective modules,” Pac. J. Math.,47, No. 1, 199–220 (1973). · Zbl 0227.16018
[513] R. W. Miller and D. R. Turnidge, ”Morita duality for endomorphism rings,” Proc. Am. Math. Soc.,31, No. 1, 91–94 (1972). · Zbl 0205.34003
[514] R. W. Miller and D. R. Turnidge, ”Factors of cofinitely generated injective modules,” Commun. Algebra,4, No. 3, 233–243 (1976). · Zbl 0322.16011
[515] S. Mohamed and B. J. Müller, ”Decomposition of dual-continuous modules,” in: Lecture Notes in Mathematics, Vol. 700 (1979), pp. 87–94.
[516] S. Mohamed and S. Singh, ”Generalizations of decomposition theorems known over perfect rings,” J. Austral. Math. Soc.,A24, No. 4, 496–510 (1977). · Zbl 0379.16007
[517] G. S. Monk, ”On the endomorphism ring of an Abelian p-group and of a large subgroup,” Pac. J. Math.,41, No. 1, 183–193 (1972). · Zbl 0197.02201
[518] G. S. Monk, ”A characterizations of exchange rings,” Proc. Am. Math. Soc.,35, No. 2, 349–353 (1972). · Zbl 0258.16030
[519] J. D. Moore and E. J. Hewett, ”On fully invariant subgroups of Abelian p-groups,” Comment. Math. Univ. St. Pauli,20, No. 2, 97–106 (1972). · Zbl 0254.20039
[520] E. R. Morgado, ”Sobre el grupo de automorfismos de un p-grupo abeliano finito,” Cienc. Mat.,2, No. 2, 105–119 (1981).
[521] K. Motose, ”Note on the endomorphism ring,” J. Fac Sci. Shushu Univ.,6, No. 1, 35–36 (1971). · Zbl 0327.16006
[522] B. J. Müller, ”The quotient category of a Morita context,” J. Algebra,28, No. 3, 389–407 (1974). · Zbl 0277.16019
[523] W. Müller, ”On Artin rings of finite representation type,” in: Lecture Notes in Mathematics, Vol. 488 (1975), pp. 236–243.
[524] I. M. Musson, ”Injective modules for group rings of polycyclic groups. I, II,” Q. J. Math.,31, No. 124, 429–448, 449–466 (1980). · Zbl 0413.16012
[525] C. Nastasescu, ”L’anneau des endomorphismes d’un module de torsion,” J. Algebra,23, No. 3, 476–481 (1972). · Zbl 0249.16015
[526] C. Nastasescu, ”La structure des modules par rappor à une topologie additive,” TÔhoku Math. J.,26, No. 2, 173–201 (1974). · Zbl 0283.16020
[527] M. Newman, Integral Matrices, Academic Press, New York (1972). · Zbl 0254.15009
[528] W. K. Nicholson, ”I-rings,” Trans. Am. Math. Soc.,207, 361–373 (1975). · Zbl 0305.16010
[529] W. K. Nicholson, ”Semiregular nodules and rings,” Can. J. Math.,28, No. 5, 1105–1120 (1976). · Zbl 0317.16005
[530] W. K. Nicholson, ”Lifting idempotents and exchange rings,” Trans. Am. Math. Soc.,229, 269–278 (1977). · Zbl 0352.16006
[531] W. K. Nicholson and J. F. Watters, ”Normal radicals and normal classes of rings,” J. Algebra,59, No. 1, 7–15 (1979). · Zbl 0413.16005
[532] W. K. Nicholson, J. F. Watters, and J. M. Zelmanowitz, ”On extensions of weakly primitive rings,” Can. J. Math.,32, No. 4, 937–944 (1980). · Zbl 0449.16006
[533] A.-M. Nicolas, ”Sur les modules tels que toute suite croissante de sous-modules engendrés par n générateurs soit stationaire,” J. Algebra,60, No. 1, 249–260 (1979). · Zbl 0419.13010
[534] D. Niewieczerzal, ”Some examples of rings with annihilator conditions,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,26, No. 1, 1–5 (1978). · Zbl 0381.16008
[535] M. Nishi, ”On the ring of endomorphisms of an indecomposable injective module over a Prüfer ring,” Hiroshima Math. J.,2, No. 2, 271–283 (1972). · Zbl 0281.13006
[536] C. Nita, ”S-inele si inele N-regulate,” Stud. Cerc. Mat.,24, No. 4, 579–621 (1972). · Zbl 0243.16011
[537] C. Nita, ”Quelques remarques sur 1’endomorphismes d’un module, générateur projectif,” C. R. Acad. Sci.,282, No. 21, A1219-A1220 (1976). · Zbl 0333.16025
[538] C. Nita, ”Sur l’anneau des endomorphismes d’un module, générateur projectif,” J. Algebra,49, No. 1, 149–153 (1977). · Zbl 0381.16009
[539] D. G. Northcott, A First Course of Homological Algebra, Cambridge Univ. Press (1973). · Zbl 0302.18009
[540] M. Novotny, ”Zamenitelnost endomorfismu linéarnich prostoru,” čas. PĚstov. Mat.,107, No. 2, 124–138 (1982).
[541] K. Ohtake, ”A generalization of Kato’s theorem on Morita duality,” J. Pure Appl. Algebra,17, No. 3, 323–332 (1980). · Zbl 0431.16002
[542] K. C. O’Meara, ”Right orders in full linear rings,” Bull. Austral. Math. Soc.,6, No. 3, 468–470 (1972). · Zbl 0246.16002
[543] K. C. O’Meara, ”Primeness of right orders in full linear rings,” J. Algebra,26, No. 2, 172–184 (1973). · Zbl 0278.16004
[544] K. C. O’Meara, ”Intrinsic extensions of prime rings,” Pac. J. Math.,5, No. 1, 257–269 (1974). · Zbl 0298.16003
[545] K. C. O’Meara, ”Right orders in full linear rings,” Trans. Am. Math. Soc.,203, 299–318 (1975). · Zbl 0298.16004
[546] O. T. O’Meara, Lectures on Linear Groups, American Mathematical Society, Providence, R.I. (1974).
[547] O. T. O’Meara, ”A general isomorphism theory for linear groups,” J. Algebra,44, No. 1, 93–142 (1977). · Zbl 0356.15002
[548] T. Onodera, ”Ein Satz über koendlich erzeugte RZ-Moduln,” TÔhoku Math. J.,23, No. 4, 691–695 (1971). · Zbl 0237.16019
[549] T. Onodera, ”Linearly compact modules and cogenerators,” J. Fac. Sci. Hokkaido Univ. Der. 1,22, Nos. 3–4, 116–125 (1972). · Zbl 0242.16016
[550] T. Onodera, ”Koendlich erzeugte Moduln und Kogeneratoren,” Hokkaido Math. J.,2, No. 1, 69–83 (1973). · Zbl 0263.16021
[551] T. Onodera, ”Linearly compact modules and cogenerators. II,” Hokkaido Math. J.,2, No. 2, 243–251 (1973). · Zbl 0268.16024
[552] T. Onodera, ”On modules which are flat over their endomorphism rings,” Hokkaido Math. J.,7, No. 2, 179–182 (1978). · Zbl 0392.16017
[553] A. Orsatti,”Anelli di endomorfismi di gruppi abeliani senza torsione,” in: Symp. Mat. Ist. Naz. Alta Mat., Vol. 8, London-New York (1972), pp. 179–191. · Zbl 0248.16001
[554] A. Orsatti, ”Alcuni aspetti della teoria dei gruppi Abeliani,” Boll. Unione Mat. Ital.,A13, No. 3, 485–533 (1976). · Zbl 0372.20043
[555] B. L. Osofsky, ”Weak global dimension of endomorphism rings of free modules,” J. Pure Appl. Algebra,24, No. 2, 203–211 (1982). · Zbl 0485.16019
[556] E. Oxford and G. Walls, ”Endocyclic groups,” Arch. Math.,32, No. 2, 109–113 (1979). · Zbl 0393.20038
[557] M. A. Pannone, ”Semigruppi di endomorfismi di gruppi abeliani finiti,” Rend. Mat.,5, No. 4, 785–802 (1972 (1973)). · Zbl 0262.20081
[558] B. Pareigis, ”Nonadditive ring and module theory. III. Morita equivalences,” Publ. Math.,25, Nos. 1–2, 177–186 (1978). · Zbl 0377.16023
[559] J.-L. Pascand, ”Anneaux d’endomorphismes à identités polynomiales,” C. R. Acad. Sci.,280, No. 17, A1093-A1096 (1975). · Zbl 0301.16017
[560] R. D. Peterson, ”One-sided inverses in rings,” Can. J. Math.,27, No. 1, 218–224 (1975). · Zbl 0268.16005
[561] M. Petrich, ”Jacobson-type theorems of lattices,” Algebra Univ.,2, No. 2, 224–233 (1972). · Zbl 0265.06008
[562] M. Petrich, Rings and Semigroups, Lecture Notes in Mathematics, Vol. 380 (1974). · Zbl 0278.20068
[563] S. Pierce, ”Multiplicative maps of matrix semigroups over Dedekind rings,” Arch. Math.,24, No. 1, 25–29 (1973). · Zbl 0253.20089
[564] P. Plaumann, ”Automorphism groups of locally compact Abelian groups,” in: Lecture Notes in Mathematics, Vol. 874 (1981), pp. 272–282. · Zbl 0474.22002
[565] J. Pomfret and B. R. McDonald, ”Automorphisms of GLn(R), R a local ring,” Trans. Am. Math. Soc.,173, 379–388 (1982). · Zbl 0254.20033
[566] B. PondĚliček, ”The chain of right ideals in rings and semigroups,” Ann. Univ. Sci. Budapest. Sec. Math.,20, 21–22 (1977).
[567] V. Poneleit, ”Lineare Kompaktheit und die Zerlegung endlich erzeugter Moduln bei einreihigen Duoringen,” Mitt. Math. Sem. Giessen, No. 121, 85–92 (1976). · Zbl 0333.16019
[568] I. S. Ponizovskii, ”On irreducible matrix semigroups,” Semigroup Forum,24, Nos. 2–3, 117–148 (1982). · Zbl 0491.20053
[569] G. D. Poole and J. D. Reid, ”Abelian groups quasiinjective over their endomorphism rings,” Can. J. Math.,24, No. 4, 617–621 (1972). · Zbl 0239.20069
[570] H.-G. Quebbemann, ”Schiefkörper als Endomorphismenringe einfacher Moduln über einer Weil-algebra,” J. Algebra,59, No. 2, 311–312 (1979). · Zbl 0417.16003
[571] K. M. Rangaswamy, ”Regular and Baer rings,” Proc. Am. Math. Soc.,42, No. 2, 354–358 (1974). · Zbl 0249.16017
[572] K. M. Rangaswamy, ”Abelian groups with self-injective endomorphism rings,” in: Lecture Notes in Mathematics, Vol. 372 (1974), pp. 595–604. · Zbl 0298.20042
[573] K. M. Rangaswamy, ”Endomorphism representations of Zorn rings and subclasses of rings with enough idempotents,” J. Reine Angew. Math.,276, 44–55 (1975). · Zbl 0305.16011
[574] K. M. Rangaswamy, ”Some remarks on the endomorphism rings of quasiprojective modules,” Publ. Math.,26, Nos. 1–2, 71–73 (1979). · Zbl 0425.16023
[575] J. Reid, ”Abelian groups finitely generated over their endomorphism rings,” in: Lecture Notes in Mathematics, Vol. 874 (1981), pp. 41–52. · Zbl 0459.20048
[576] H. Ren and Z. Wan, ”Automorphism of PGL2(K) over any skew field K,” Acta Math. Sin.,25, No. 2, 208–218 (1982). · Zbl 0489.20039
[577] G. Renault, Algèbre Noncommutative, Gauthier-Villars, Paris (1975).
[578] R. Resco, ”A reduction theorem for the primitivity of tensor products,” Math. Z.,170, No. 1, 65–76 (1980). · Zbl 0403.16007
[579] C. Rhodes, ”Sur des chaÎnes d’idéaux principaux dans un anneau commutatif Noetherien,” C. R. Acad. Sci.,281, No. 13, A495-A497 (1975). · Zbl 0313.13009
[580] F. Richman and E. A. Walker, ”Modules over PIDs that are injective over their endomorphism rings,” in: Ring Theory, Proc. Conference, Park City, Utah, 1971, Academic Press, New York (1972), pp. 363–372. · Zbl 0235.13005
[581] F. Richman and E. A. Walker, ”Homological dimension of Abelian groups over their endomorphism rings,” Proc. Am. Math. Soc.,54, 65–68 (1976). · Zbl 0326.20049
[582] F. Richman and E. A. Walker, ”Cyclic Ext,” Rocky Mount. J. Math.,11, No. 4, 611–615 (1981). · Zbl 0719.20029
[583] Ringe, Moduln und Homologische Methoden, Tagungsber. Math. Forschungsinst. Oberwolfach, No. 20, 1–15 (1977).
[584] E. Robert, ”Sur quelques propriétés du foncteur Hom,” Thèse Doct. Sci. Math. Fac Sci. Univ. Paul Sabatier (1970).
[585] E. Robert, ”Une propriété d’exatitude du foncteur Hom et quelques caratérisations de modules projectifs,” J. Algebra,28, No. 2, 253–282 (1974). · Zbl 0291.18011
[586] K. W. Roggenkamp, ”Bass algebras,” J. Pure Appl. Algebra,9, No. 2, 169–179 (1977). · Zbl 0359.16014
[587] J. G. Rosenstein, ”On GL2(R) where R is a Boolean ring,” Canad. Math. Bull.,15, No. 2, 263–275 (1972). · Zbl 0246.20037
[588] B. Roux, ”Sur la dualité de Morita,” TÔhoku Math. J.,23, No. 3, 457–472 (1971). · Zbl 0233.16016
[589] B. Roux, ”Modules sur les anneaux artiniens,” C. R. Acad. Sci.,276, No. 3, A171-A174 (1973). · Zbl 0256.16015
[590] B. Roux, ”Modules injectifs indécomposables sur les anneaux artiniens et dualité de Morita,” Semin. P. Dubreil, Algèbre, Univ. Paris, 26, 10/1-10/19 (1972–1973).
[591] B. Roux, ”Sur les anneaux de Köthe,” An. Acad. Brasil. Ciénc,48, No. 1, 13–28 (1976). · Zbl 0355.16016
[592] L. H. Rowen, ”Monomial conditions on prime rings,” Israel J. Math.,27, No. 2, 131–149 (1977). · Zbl 0426.16003
[593] G. Sabbagh, ”Endomorphisms of finitely presented modules,” Proc. Am. Math. Soc.,30, No. 1, 75–78 (1971). · Zbl 0218.13013
[594] L. Salce and F. Menegazzo, ”Abelian groups whose endomorphism ring is linearly compact,” Rend. Sem. Mat. Univ. Padova,53, 315–325 (1975). · Zbl 0364.20061
[595] J. D. Sally and W. Vasconcelos, ”Stable rings and a problem of Bass,” Bull. Am. Math. Soc.,79, No. 3, 574–576 (1973). · Zbl 0259.13005
[596] J. D. Sally and W. Vasconcelos, ”Stable rings,” J. Pure Appl. Algebra,4, No. 3, 319–336 (1974). · Zbl 0284.13010
[597] P. P. Sanchez, ”On automorphism groups of finite-dimensional modules,” Compos. Math.,28, No. 1, 21–31 (1974). · Zbl 0286.20052
[598] F. L. Sandomierski, ”Modules over the endomorphism ring of a finitely generated projective module,” Proc. Am. Math. Soc.,31, No. 1, 27–31 (1972). · Zbl 0233.16021
[599] A. D. Sands, ”Radicals and Morita contexts,” J. Algebra,24, No. 2, 335–345 (1973). · Zbl 0253.16007
[600] B. Sarath, ”Structure of some Noetherian injective modules,” Can. J. Math.,32, No. 6, 1277–1287 (1980). · Zbl 0464.16018
[601] H. Sato, ”Duality of torsion modules over a QF-3 one-dimensional Gorenstein ring,” Sci. Reports Tokyo Kyoiku Daigaku,A13, Nos. 347–365, 28–36 (1975). · Zbl 0334.16020
[602] M. Sato, ”On equivalences between module categories,” in: Proc. 10th Symposium on Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 83–94.
[603] M. Sato, ”Fuller’s theorem on equivalences,” J. Algebra,52, No. 1, 274–284 (1978). · Zbl 0374.16024
[604] M. Sato, ”On equivalences between module subcategories,” J. Algebra,59, No. 2, 412–420 (1979). · Zbl 0413.16027
[605] H. Schaeffer, ”Das von Staudtsche Theorem in der Geometrie der Algebren,” J. Reine Angew. Math.,267, 133–142 (1974). · Zbl 0283.50019
[606] P. Schultz, ”On a paper of Szele and Szendrei on groups with commutative endomorphism rings,” Acta Math. Acad. Sci. Hung.,24, Nos. 1–2 (1973). · Zbl 0259.20046
[607] P. Schultz, ”The endomorphism ring of the additive group of a ring,” J. Austral. Math. Soc.,15, No. 1, 60–69 (1973). · Zbl 0257.20037
[608] R. Y. Sharp, ”Secondary representations for injective modules over commutative Noetherian rings,” Proc. Edinburgh Math. Soc.,20, No. 2, 143–151 (1976). · Zbl 0334.13004
[609] D. W. Sharpe and P. Vámos, Injective Modules, Cambridge Univ. Press (1972).
[610] S. Shelah, ”On endorigid, strongly 1 -free Abelian groups in 1,” Israel J. Math.,40, Nos. 3–4, 291–295 (1981). · Zbl 0501.03015
[611] R. C. Shock, ”The ring of endomorphisms of a finite-dimensional module,” Israel J. Math.,11, No. 3, 309–314 (1972). · Zbl 0235.16007
[612] T. Shores and W. J. Lewis, ”Serial modules and endomorphism rings,” Duke Math. J.,41, No. 4, 889–909 (1974). · Zbl 0294.13007
[613] S. Singh and A. Beg, ”Restricted balanced rings,” Arch. Math.,33, No. 2, 127–130 (1979). · Zbl 0482.16019
[614] W. S. Sizer, ”Triangularizing semigroups of matrices over a skew field,” Linear Algebra Appl.,16, No. 2, 177–187 (1977). · Zbl 0354.15005
[615] S. O. Smal{\(\Phi\)}, ”Global dimension of special endomorphism rings over Artin algebras,” Illinois J. Math.,22, No. 3, 414–427 (1978). · Zbl 0383.16016
[616] S. O. Smal{\(\Phi\)}, ”A limit on the Loewy length of the endomorphism ring of a module of finite length,” Proc. Am. Math. Soc.,81, No. 2, 164–166 (1981). · Zbl 0456.16030
[617] M. Smith, ”Finitely generated algebras over a field,” in: Lecture Notes in Mathematics, Vol. 700 (1979), p. 299. · Zbl 1315.13002
[618] R. L. Snider, ”Group algebras whose simple modules are finite-dimensional over their commuting rings,” Commun. Algebra,2, No. 1, 15–25 (1974). · Zbl 0286.20006
[619] R. L. Snider, ”Rings whose modules are projective over endomorphism rings,” Proc. Am. Math. Soc.,46, No. 2, 164–168 (1974). · Zbl 0292.16010
[620] J. T. Stafford, ”A simple Noetherian ring not Morita equivalent to a domain,” Proc. Am. Math. Soc.,68, No. 2, 159–160 (1978). · Zbl 0376.16004
[621] J. T. Stafford, ”Morita equivalence of simple Noetherian rings,” Proc. Am. Math. Soc.,74, No. 2, 212–214 (1979). · Zbl 0408.16004
[622] B. Stenström, ”The maximal ring of quotients of a triangular matrix ring,” Math. Scand.,34, No. 2, 162–166 (1974). · Zbl 0291.16002
[623] B. Stenström, Rings of Quotients. An Introduction to Methods of Ring Theory, Springer-Verlag, Berlin (1975). · Zbl 0296.16001
[624] W. Stephenson, ”Modules whose lattice of submodules is distributive,” Proc. London Math. Soc.,28, No. 2, 291–310 (1974). · Zbl 0294.16003
[625] I. Stewart, ”The Lie algebra of endomorphisms of an infinite-dimensional vector space,” Compos. Math.,25, No. 1, 79–86 (1972). · Zbl 0241.17008
[626] R. Stölting, ”Ebene metrische Geometrien über projektiven Moduln,” Abh. Math. Sem. Univ. Hamburg,50, 166–177 (1980). · Zbl 0454.51007
[627] D. R. Stone, ”Maximal left ideals and idealizers in matrix rings,” Can. J. Math.,32, No. 6, 1397–1410 (1980). · Zbl 0411.16026
[628] R. W. Stringall, ”Primary modules determined by indecomposable idempotent endomorphisms,” Proc. Am. Math. Soc.,31, No. 1, 54–56 (1972). · Zbl 0247.20057
[629] Y. Suzuki, ”Double centralizers of torsionless modules,” Proc. Jpn. Acad.,50, No. 8, 612–615 (1974). · Zbl 0319.16008
[630] M. Sweedler, ”The predual theorem to the Jacobson-Bourbaki theorem,” Trans. Am. Math. Soc.,213, 391–406 (1975). · Zbl 0317.16007
[631] H. Tachikawa and Y. Iwanaga, ”Morita’s Eh-condition and double centralizers. I, II,” J. Algebra,26, No. 2, 167–171 (1973);31, No. 1, 73–90 (1974). · Zbl 0266.16013
[632] M. Takeuchi, ”Morita theorems for categories of comodules,” J. Fac Sci. Univ. Tokyo, Sec 1A,24, No. 3, 629–644 (1977). · Zbl 0385.18007
[633] M. Takeuchi, ”On direct modules,” Hokkaido Math. J.,1, No. 2, 168–177 (1972). · Zbl 0253.16019
[634] M. Takeuchi, ”The endomorphism ring of an indecomposable module with an Artinian projective cover,” Hokkaido Math. J.,4, No. 2, 265–267 (1975). · Zbl 0314.16022
[635] K. Thoma, ”Die Untermoduln von M(n, K),” Arch. Mat.33, No. 4, 326–333 (1979). · Zbl 0411.16017
[636] A. K. Tiwary and A. Kumar, ”On the endomorphism ring of a pseudoprojective module,” Ann. Fac. Sci. Univ. Nat. Zaire (Kinshasa). Sect. Math. Phys.,4, No. 1, 67–73 (1978). · Zbl 0419.16011
[637] G. Törner, ”Some remarks on the structure of indecomposable injective modules over valuation rings,” Commun. Algebra,4, No. 5, 467–482 (1976). · Zbl 0322.16012
[638] G. Törner, ”Unzerlegbare injektive Moduln über Kettenringen,” J. Reine Angew. Math.,285, 172–180 (1976). · Zbl 0326.16024
[639] R. Treger, ”Reflexive modules,” J. Algebra,54, No. 2, 444–466 (1978). · Zbl 0406.14001
[640] F. Ulmer, ”Localizations of endomorphism rings and fixpoints,” J. Algebra,43, No. 2, 529–551 (1976). · Zbl 0378.18009
[641] M. H. Upham, ”Localization and completion of FBN hereditary rings,” Commun. Algebra,7, No. 12, 1269–1307 (1979). · Zbl 0423.16002
[642] P. Vámos, ”Test modules and cogenerators,” Proc. Am. Math. Soc.,56, No. 1, 8–10 (1976). · Zbl 0328.13008
[643] P. Vámos, ”Rings with duality,” Proc. London Math. Soc.,35, No. 2, 275–289 (1977). · Zbl 0372.16016
[644] P. Vámos, ”Semilocal Noetherian PI-rings,” Bull. London Math. Soc.,9, No. 3, 251–256 (1977). · Zbl 0387.16009
[645] P. Vámos, ”Finitely generated Artinian and distributive modules are cyclic,” Bull. London Math. Soc.,10, No. 3, 287–288 (1978). · Zbl 0398.16006
[646] C. Vinsonhaler, ”Torsion-free Abelian groups quasiprojective over their endomorphism rings. II,” Pac J. Math.,74, No. 1, 261–265 (1978); correction: Pac J. Math.,79, No. 2, 564–565 (1978). · Zbl 0349.20022
[647] C. Vinsonhaler and W. J. Wickless, ”Torsion-free Abelian groups quasiprojective over their endomorphism rings,” Pac. J. Math.,68, No. 2, 527–535 (1977). · Zbl 0371.20044
[648] C. Vinsonhaler and W. J. Wickless, ”Injective hulls of torsion-free Abelian groups as modules over their endomorphism rings,” J. Algebra,58, No. 1, 64–69 (1979). · Zbl 0413.20040
[649] C. Vinsonhaler and W. J. Wickless, ”The injective hull of a sparable p-group as an E-module,” J. Algebra,71, No. 1, 32–40 (1981). · Zbl 0471.20037
[650] A. Vogel, ”Spectrum of a locally cyclic module over a commutative von Neumann regular ring,” Commun. Algebra,9, No. 16, 1617–1637 (1981). · Zbl 0472.13002
[651] T. Vorst, ”The general linear group of polynomial rings over regular rings,” Commun. Algebra,9, No. 5, 499–509 (1981). · Zbl 0453.20042
[652] S. M. Vovsi, ”Lattices of invariant subspaces of group representations,” Algebra Univ.,12, No. 2, 221–223 (1981). · Zbl 0465.06007
[653] R. L. Wagoner, ”Cogenerator endomorphism rings,” Proc. Am. Math. Soc.,28, No. 2, 347–353 (1971). · Zbl 0214.29203
[654] C. L. Walker and R. B. Warfield, Jr., ”Unique decomposition and isomorphic refinement theorems in additive categories,” J. Pure Appl. Algebra,7, No. 3, 347–359 (1976). · Zbl 0354.18011
[655] R. B. Warfield, ”Decomposability of finitely presented modules,” Proc. Am. Math. Soc.,25, No. 1, 167–172 (1970). · Zbl 0204.05902
[656] R. B. Warfield, ”Exchange rings and decompositions of modules,” Math. Ann.,199, No. 1, 31–36 (1972). · Zbl 0228.16012
[657] R. B. Warfield, ”Cancellation of modules and groups and stable range of endomorphism rings,” Pac. J. Math.,91, No. 2, 457–485 (1980). · Zbl 0484.16017
[658] W. C. Waterhouse, ”Automorphisms of GLn(R),” Proc. Am. Math. Soc.,79, No. 3, 347–351 (1980). · Zbl 0442.20027
[659] M. C. Webb, ”The endomorphism ring of homogeneously decomposable separable groups,” Arch. Math.,31, No. 3, 235–243 (1978). · Zbl 0424.20049
[660] M. C. Webb, ”The endomorphism ring of pointed separable torsion-free Abelian groups,” J. Algebra,55, No. 2, 446–454 (1978). · Zbl 0404.20047
[661] B. A. F. Wehrfritz, Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices, Springer-Verlag, Berlin (1973). · Zbl 0261.20038
[662] B. A. F. Wehrfritz, ”Finitely generated groups of module automorphisms and finitely generated metabelian groups,” in: Symp. Math. Ist. Naz. Alta Mat., Vol. 17, London-New York (1975), pp. 261–275.
[663] B. A. F. Wehrfritz, ”Automorphism groups of Noetherian modules over commutative rings,” Arch. Math.,27, No. 3, 276–281 (1976). · Zbl 0333.13009
[664] B. A. F. Wehrfritz, ”Finite central height in linear groups,” Linear Algebra Appl.,17, No. 1, 59–64 (1977). · Zbl 0361.20050
[665] B. A. F. Wehrfritz, ”Nilpotence in groups of semilinear maps,” Proc. London Math. Soc.,36, No. 3, 448–479 (1978). · Zbl 0374.20040
[666] B. A. F. Wehrfritz, Lectures around Complete Local Rings, Queen Mary College Mathematics Notes, London (1979).
[667] H. Weller, ”Zusammenhang zwischen verbandstheoretischen Eigenschaften des Verbandes Z(R3) und arithmetischen Eigenschaften des zugehörigen Rings,” Mitt. Math. Sem. Giessen, No. 118 (1975). · Zbl 0334.50012
[668] W. J. Wickless, ”T as an E-submodule of G,” Pac. J. Math.,83, No. 2, 555–564 (1979). · Zbl 0414.20045
[669] A. Wiedemann, ”Orders with loops in their Auslander-Reiten graph,” Commun. Algebra,9, No. 6, 641–656 (1981). · Zbl 0466.16005
[670] R. Wisbauer, ”{\(\sigma\)}-Semiperfekte und {\(\sigma\)}-perfekte Moduln,” Math. Z.,162, No. 2, 131–138 (1978). · Zbl 0368.16011
[671] R. Wisbauer, ”Localization of modules and the central closure of rings,” Commun. Algebra,9, No. 14, 1455–1493 (1981). · Zbl 0461.16020
[672] Y. H. Xu, ”A theory of rings that are isomorphic to complete rings of linear transformations. I, II, III, IV,” Acta Math. Sin.,22, No. 2, 204–218, No. 3, 303–315, No. 4, 389–403, No. 5, 556–568 (1979). · Zbl 0479.16008
[673] K. Yamagata, ”On projective modules with the exchange property,” Sci. Reports Tokyo Kyoiku Daigaku,12, Nos. 329–346, 149–158 (1974). · Zbl 0307.16017
[674] K. Yamagata, ”The exchange property and direct sums of indecomposable injective modules,” Pac. J. Math.,55, No. 1, 301–317 (1974). · Zbl 0283.16015
[675] K. Yamagata, ”On Morita duality for additive group valued functors,” Commun. Algebra,7, No. 4, 367–392 (1979). · Zbl 0395.16017
[676] K. Yamagata, ”On extensions over artinian rings with self-dualities,” Tsukuba J. Math.,4, No. 1, 67–75 (1980). · Zbl 0467.16022
[677] Y. Yokoyama, ”A note on automorphisms of matrix algebras,” TRU Math.,17, No. 1, 103–111 (1981). · Zbl 0477.16019
[678] J. Zelmanowitz, ”Semiprime modules with maximum conditions,” J. Algebra,25, No. 3, 554–574 (1973). · Zbl 0258.16002
[679] J. Zelmanowitz, ”Orders in simple Artinian rings are strongly equivalent to matrix rings,” Pac. J. Math.,48, No. 2, 621–627 (1973). · Zbl 0279.16001
[680] J. Zelmanowitz, ”An extension of the Jacobson density theorem,” Bull. Am. Math. Soc.,82, No. 4, 551–553 (1976). · Zbl 0329.16006
[681] J. Zelmanowitz, ”Dense rings of linear transformations,” in: Ring Theory II, Proc. 2nd Ohla Conference, 1975, New York-Basel (1977).
[682] J. Zelmanowitz, ”Weakly primitive rings,” Commun. Algebra,9, No. 1, 23–45 (1981). · Zbl 0469.16004
[683] W. Zimmermann, ”über die aufsteigende Kettenbedingung für Annulatoren,” Arch. Math.,27, No. 3, 261–266 (1976). · Zbl 0337.16003
[684] B. Zimmermann-Huisgen, ”Endomorphism rings of self-generators,” Pac. J. Math.,61, No. 2, 587–602 (1975). · Zbl 0306.16021
[685] B. Zimmermann-Huisgen and W. Zimmermann, ”Algebraically compact rings and modules,” Math. Z.,161, No. 1, 81–93 (1978). · Zbl 0363.16017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.