Ensembles code-compatibles et une généralisation du théorème de Sardinas-Patterson. (French) Zbl 0574.20053

Author’s abstract: One denotes by \(A^{\infty}\) the monoid of all finite and infinite words over an alphabet \(A\). The code-compatibility of a pair \((X,Y)\) of subsets of \(A^{\infty}\) is here defined. A necessary and sufficient condition, which is a generalization of the Sardinas-Patterson theorem [IER Conv. Record 8, 104–108 (1953)], for \((X,Y)\) to be code-compatible is established. It is shown that the class of the submonoids of \(A^{\infty}\) generated by an infinitary code is closed under intersection, and also that, for any two infinitary codes \(X\) and \(Y\), \(X^*\cap Y^*=(X\cap Y)^*\) iff (X,Y) is code-compatible.”


20M35 Semigroups in automata theory, linguistics, etc.
68Q45 Formal languages and automata
Full Text: DOI


[1] Berstel, J.; Perrin, D.; Schützenberger, M. P., Théorie des Codes (1981), LITP: LITP Paris, Chapitres I-IV
[2] Eilenberg, S., (Automata, Languages and Machines, Vol. A (1974), Academic Press: Academic Press New York) · Zbl 0317.94045
[3] Riley, J. A., The Sardinas/Patterson and Levenstein theorems, Inform. Control, 10, 120-136 (1967) · Zbl 0148.40306
[4] Sardinas, A. A.; Patterson, G. W., A necessary and sufficient condition for unique decomposition of coded message, IER Conv. Record, 8, 104-108 (1953)
[5] Tilson, B., The intersection of free submonoids of a free monoid is free, Semigroup Forum, 4, 345-350 (1972) · Zbl 0261.20060
[6] Van, D. L., Codes avec des mots infinis, RAIRO Informatique Théorique, 16, 371-386 (1982) · Zbl 0498.68053
[7] Van, D. L., Sous-monoïdes et codes avec des mots infinis, Semigroup Forum, 26, 75-87 (1983) · Zbl 0504.68054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.