Rigidity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces. (English) Zbl 0574.32021

Suppose X is an n-dimensional Stein space having the homotopy type of a CW-complex with real dimension exactly n. The author seeks conditions such that an injective holomorphic self-map \(f: X\to X\) which induces an automorphism on \(H_ n(X,{\mathbb{Z}})\) will be an automorphism of X. For example, if X is a manifold such that the bounded holomorphic functions give a local embedding near each point, then summing over a countable family yields a bounded strictly plurisubharmonic function on X. Also assuming the existence of a bounded weakly plurisubharmonic exhaustion function and that \(H^ n(X,{\mathbb{C}})\) is finite dimensional, the author uses the \(L^ 2\)-estimates for \({\bar \partial}\) with weights, due to A. Andreotti and E. Vesentini [Publ. Math., Inst. Haut. Étud. Sci. 25, 81-130 (1965; Zbl 0138.066)] and L. Hörmander [Acta Math. 113, 89-152 (1965; Zbl 0158.110)], to show that every de Rham class in \(H^ n(X,{\mathbb{C}})\) can be represented by square-integrable holomorphic n-forms. This along with a modification of the iteration technique of H. Cartan yields \(f\in Aut(X)\). He also shows \(f\in Aut(X)\) assuming X is complete with respect to its Caratheodory pseudometric.
The proof for spaces is more delicate (without assuming a bound on the embedding dimension). By embedding one obtains holomorphic n-forms on a relatively compact subset and by solving a suitable \({\bar \partial}\)- problem one can extend to \(L^ 2\) holomorphic n-forms on Reg(X). That Stokes’ theorem holds for \(L^ 2\) holomorphic n-forms on Reg(X) when the cycles intersect Sing(X) is proved using the normal decomposition of semi-analytic sets due to S. Lojasiewicz [Ann. Sc. Norm Super. Pisa, Sci. Fis. Mat., III. Ser. 18(1964), 449-474 (1965; Zbl 0128.171)]. In the complete case another Runge approximation argument is needed.
As well the author proves a rigidity theorem for weakly pseudoconvex domains with smooth boundary without the injectivity assumption on the map.
Reviewer: B.Gilligan


32E10 Stein spaces
32M05 Complex Lie groups, group actions on complex spaces
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
55P15 Classification of homotopy type
32U05 Plurisubharmonic functions and generalizations
32H99 Holomorphic mappings and correspondences
Full Text: DOI EuDML


[1] Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. I.H.E.S. Publ. Math.25, 81-130 (1965) · Zbl 0138.06604
[2] Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Ann. Math.69, 713-717 (1959) · Zbl 0115.38405
[3] Bedford, E., Burns, D.: Holomorphic mapping of annuli in ? n and the associated extremal function. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. IV.6, 381-414 (1979) · Zbl 0422.32021
[4] Bloom, T., Herrera, M.E.: De Rham cohomology of an analytic space. Invent. Math.7, 275-296 (1969) · Zbl 0175.37301
[5] Bungart, L.: Integration on real analytic varieties. I, J. Math. Mech.15, 1039-1045 (1966); II, ibid. 1047-1054. · Zbl 0158.40601
[6] Chern, S.S., Levine, H., Nirenberg, L.: Intrinsic norms on a complex manifold. In: Global analysis. (Papers in honor of K. Kodaira), pp. 119-139. Tokyo: University of Tokyo Press 1969 · Zbl 0202.11603
[7] Diederich, K., Fornaess, J.E.: Pseudoconvex domains: an example with non-trivial Nebenhülle. Math. Ann.225, 275-292 (1977) · Zbl 0333.32018
[8] Diederich, K., Fornaess, J.E.: Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions. Invent. Math.39, 129-141 (1977) · Zbl 0353.32025
[9] Fornaess, J.E.: Peak points on locally pseudoconvex domains. Math. Ann.227, 173-175 (1977) · Zbl 0346.32026
[10] Grauert, H., Kerner, H.: Deformationen von Singularitäten komplexer Räume. Math. Ann.153, 236-260 (1964) · Zbl 0118.30401
[11] Hamm, A.H.: Zum Homotopietyp Steinscher Räume. J. reine angew. Math.338, 121-135 (1983) · Zbl 0491.32010
[12] Hirschowitz, A.: Domaines de Stein et fonctions holomorphes bornées. Math. Ann.213, 185-193 (1975) · Zbl 0289.32004
[13] Herrera, M.E.: Integration on a semi-analytic set. Bull. Soc. Math. France94, 141-180 (1966) · Zbl 0158.20601
[14] Hörmander, L.:L 2 estimates and existence theorems of the \(\bar \partial\) operator. Acta Math.113, 89-152 (1965) · Zbl 0158.11002
[15] Huber, H.: Über analytische Abbildungen Riemannscher Flächen in sich. Comment. Math. Helv.27, 1-73 (1953) · Zbl 0050.08405
[16] Kaup, L.: Eine topologische Eigenschaft Steinscher Räume. Nachr. Akad. Wiss. Göttingen, Math.-Phys. K. II, 213-214 (1966) · Zbl 0146.31301
[17] Kaup, W.: Hyperbolische komplexe Räume. Ann. Inst. Fourier (Grenoble)18, 303-330 (1968) · Zbl 0174.13002
[18] Kohn, J.J.: Harmonic integrals on strongly pseudoconvex manifolds. I, Ann. Math.78, 112-148 (1963); II, ibid.79, 450-472 (1964) · Zbl 0161.09302
[19] Kohn, J.J., Nirenberg, L.: A pseudoconvex domain not admitting a holomorphic support function. Math. Ann.201, 265-268 (1973) · Zbl 0248.32013
[20] ?ojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa18, 449-474 (1964) · Zbl 0128.17101
[21] Narasimhan, R.: On the homology group of Stein spaces. Invent. Math.2, 377-385 (1967) · Zbl 0148.32202
[22] Narasimhan, R.: Several complex variables. In: Chicago Lectures in Mathematics. Chicago, London: University of Chicago Press 1971 · Zbl 0223.32001
[23] Sibony, N.: Fibrés holomorphes et métrique de Carathéodory. C. Acad. Sci. (A)279, 261-264 (1974) · Zbl 0318.32029
[24] Sibony, N.: Prolongement des fonctions holomorphes bornées et metrique de Carathéodory. Invent. Math.29, 205-230 (1975) · Zbl 0333.32011
[25] Serre, J.-P.: Quelque problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables complexes (Bruxelles 1953), pp. 57-68. ed. G. Thone Liege. Paris: Masson 1953
[26] Spanier, E.H.: Algebraic topology. Bombay, New Delhi: Tata McGraw-Hill Publishing Company 1966 · Zbl 0145.43303
[27] Stehlé, J.-L.: Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire P. Lelong (Analyse), pp. 153-179 (1973-74)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.