zbMATH — the first resource for mathematics

Classes de Schatten d’opérateurs pseudo-différentiels. (French) Zbl 0574.47032
The author considers the correspondence (which goes back to H. Weyl) between a symbol \(a\in {\mathcal S}({\mathbb{R}}^{2n})\) and the operator \(0p_{1/2}(a)\) defined on \({\mathcal S}({\mathbb{R}}^ n)\) as follows \[ 0p_{1/2}(a)u(x)=\iint a(\frac{x+y}{2},\xi)e^{2i\pi <x-y,\xi >}u(y)dy d\xi. \] The main result gives a sufficient condition on a general symbol a for the operator \(0p_{1/2}(a)\) to be in the Schatten class \(S_ p\) as an operator acting on \(L^ 2({\mathbb{R}}^ n).\)
The condition involves a field \(\| \|_ X\) of symplectic norms on \({\mathbb{R}}^{2n}\) satisfying certain technical assumptions (which we do not state here) involving a number \(m_ 0>0\). For \(V\in {\mathbb{R}}^{2n}\) let \(V(D)=\sum^{n}_{1}V_ j\frac{\partial}{\partial x_ j}+V_{j+n}\frac{\partial}{\partial \xi_ j}.\)
Let \(a\in {\mathcal S}({\mathbb{R}}^{2n})\), let \[ | a|_{q,X}=Sup\{| V^ 1(D).....V^ q(D)a(X)| | \| V^ 1\|_ X\leq 1,...,\| V^ q\|_ X\leq 1\} \] and let \(\| a\|_{L_ k^ p}=\sum_{q\leq k}(\int | a|^ p_{q,X}dX)^{1/p}\), \(1\leq p<\infty.\)
The space \(L^ p_ k\) (relative to the norm field) is defined as the completion of \({\mathcal S}({\mathbb{R}}^{2n})\) for the norm \(\| \|_{L^ p_ k}\). Then the main result asserts that if k is the smallest even integer such that \(k>2n((2/p)-1)\) for \(p\in [1,2]\) and \(k>(2m_ 0+n)(1-2/p)\) for \(p\in [2,\infty]\), then the mapping \(a\to 0p_{1/2}(a)\) is bounded from \(L^ p_ k\) into \(S_ p\). A similar result holds for \(p=\infty.\)
In the second part of the paper, the author studies the converse to this result in the particular case of a constant field and for certain regularizations of the symbol a.
Reviewer: G.Pisier

47Gxx Integral, integro-differential, and pseudodifferential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI Numdam EuDML
[1] S. AOKI , On the Boundedness and the Nuclearity of Pseudo-Differential Operators (Comm. in Partial Differential Equations, vol. 6, n^\circ 8, 1981 , p. 849-881). MR 82h:47047 | Zbl 0471.35084 · Zbl 0471.35084 · doi:10.1080/03605308108820195
[2] R. BEALS Characterization of Pseudo-Differential Operators and Applications (Duke Math. J., vol. 44, n^\circ 1, 1977 , p. 45-77). Article | MR 55 #8884 | Zbl 0353.35088 · Zbl 0353.35088 · doi:10.1215/S0012-7094-77-04402-7 · minidml.mathdoc.fr
[3] L. HÖRMANDER , The Weyl Calculus of Pseudo-Differential Operators (Comm. on Pure and Appl. Math., vol. 23, n^\circ 3, 1979 , p. 359-443). Zbl 0388.47032 · Zbl 0388.47032 · doi:10.1002/cpa.3160320304
[4] N. LERNER , C. R. Acad. Sc., vol. 289, 1979 , p. 663-666. MR 80k:47055 | Zbl 0429.35078 · Zbl 0429.35078
[5] M. REED et B. SIMON , Methods of Modern Mathematical Physics. II Fourier Analysis Self-Adjointness , Acad. Press, New York, 1975 . MR 58 #12429b | Zbl 0308.47002 · Zbl 0308.47002
[6] C. RONDEAUX , Thèse 3e cycle , Reims.
[7] E. STEIN , Singular Integrals and Differentiability Properties of Functions , Princeton University Press, 1970 . MR 44 #7280 | Zbl 0207.13501 · Zbl 0207.13501
[8] A. UNTERBERGER , Les opérateurs métadifférentiels (Lecture Notes in Physics, n^\circ 126, 1980 , p. 205-241). MR 82j:35142 | Zbl 0452.35121 · Zbl 0452.35121
[9] A. UNTERBERGER , Oscillateur harmonique et opérateurs pseudo-différentiels (Ann. Inst. Fourier, vol. 29, n^\circ 3, 1979 , p. 201-221). Numdam | MR 81m:58077 | Zbl 0396.47027 · Zbl 0396.47027 · doi:10.5802/aif.758 · numdam:AIF_1979__29_3_201_0 · eudml:74420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.