Additive functionals and entrance laws. (English) Zbl 0574.60082

Let \(\nu =\{\nu_ t: t\in {\mathbb{R}}\}\) and \(h=\{h_ t: t\in {\mathbb{R}}\}\) be an entrance and exit rule, respectively, for a stationary Markov transition function in a standard Borel space (E,\({\mathcal E})\). In an appropriate trajectory space, \(\Omega\) :\({\mathbb{R}}\to E\), one may construct a \(\sigma\)-finite measure \({\mathbb{P}}^ h_{\nu}\) such that, roughly speaking, the coordinate process comes into the state space at the random birth time according to the rule \(\nu\), evolves according to the Markovian transition law, and leaves the state space at the random death time according to the rule h.
In the paper under review the additive functionals of a process with this structure are studied. The main result gives a constructive one-to-one correspondence between entrance laws and continuous additive functionals. Unfortunately this is a too complicated matter to allow any details within this limited space.
Reviewer: P.Salminen


60J55 Local time and additive functionals
60J45 Probabilistic potential theory
60J35 Transition functions, generators and resolvents
Full Text: DOI


[1] Azéma, J, Théorie générale des processus et retournement du temps, Ann. sci. école norm. sup. (4), 6, 459-519, (1973) · Zbl 0303.60061
[2] Chung, K.L; Walsh, J.B, To reverse a Markov process, Acta math., 123, 225-251, (1969) · Zbl 0187.41302
[3] Cohn, D.L, Measure theory, (1980), Birkhäuser Boston/Basel/Stuttgart · Zbl 0436.28001
[4] Dellacherie, C, Capacités et processus stochastiques, (1972), Springer-Verlag Heidelberg · Zbl 0246.60032
[5] Dellacherie, C; Meyer, P.A, Probabilities and potential, (1978), North-Holland Amsterdam/New York/Oxford
[6] Dellacherie, C; Meyer, P.A, Probabilités et potentiel: théorie discrète du potentiel, (1983), Hermann Paris · Zbl 0526.60001
[7] Dynkin, E.B, Markov systems and their additive functionals, Ann. probab., 5, 653-677, (1977) · Zbl 0379.60076
[8] Dynkin, E.B, The initial and final behaviour of trajectories of Markov processes, (), reprinted · Zbl 0281.60087
[9] Dynkin, E.B, Regular Markov processes, (), reprinted · Zbl 0385.60059
[10] Dynkin, E.B, Green’s and Dirichlet spaces associated with fine Markov processes, J. funct. anal., 47, 381-418, (1982) · Zbl 0488.60083
[11] Dynkin, E.B, An application of flows to time shift and time reversal in stochastic processes, Trans. amer. math. soc., 287, 613-619, (1985) · Zbl 0562.60076
[12] Getoor, R.K, Markov processes: ray processes and right processes, () · Zbl 0181.21401
[13] Getoor, R.K; Glover, J.H, Riesz decompositions in Markov process theory, Trans. amer. math. soc., 285, 107-132, (1984) · Zbl 0547.60076
[14] Getoor, R.K; Sharpe, M.J, Naturality, standardness, and weak duality for Markov processes, Z. wahrsch. verw. gebiete, 67, 1-62, (1984) · Zbl 0553.60070
[15] Kuznetsov, S.E, Construction of Markov processes with random times of birth and death, Theory probab. appl., 18, 571-575, (1974) · Zbl 0296.60049
[16] Meyer, P.A, Probability and potentials, (1966), Ginn Boston · Zbl 0138.10401
[17] Meyer, P.A, Ensembles aléatoires markoviens homogènes, I, (), 176-190 · Zbl 0369.60085
[18] Revuz, D, Mesures associées aux fonctionnelles additives de Markov, I, Trans. amer. math. soc., 148, 501-531, (1970) · Zbl 0266.60053
[19] {\scM. J. Sharpe}, “General Theory of Markov Processes,” forthcoming. · Zbl 0649.60079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.