×

zbMATH — the first resource for mathematics

On Enriques surfaces in characteristic \(p\). I. (English) Zbl 0575.14032
The author proves the basic results on Enriques surfaces in positive characteristic, well known in the classical case, including characteristic 2 where special phenomena occur. The main results are: the rank of the Néron-Severi group is 10, the surface admits an elliptic or quasi-elliptic pencil and it is, except when it is non-classical which is possible only in characteristic 2, birational to a sextic which is the specialization of a sextic passing doubly through the edges of a tetrahedron.
Reviewer: T.Ekedahl

MSC:
14J10 Families, moduli, classification: algebraic theory
14G15 Finite ground fields in algebraic geometry
14J25 Special surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, M.: On Enrique’s surfaces. Thesis, Harvard University, 1960 (unpublished)
[2] Artin, M.: Algebraization of formal moduli. In: Global analysis, pp. 21-71. Princeton: Princeton University Press 1969 · Zbl 0205.50402
[3] Artin, M.: Supersingular K3 surfaces. Ann. Sci. Ecole Norm. Sup.7, 543-567 (1974) · Zbl 0322.14014
[4] Artin, M.: Versal deformations and algebraic stacks. Invent. Math.27, 165-189 (1974) · Zbl 0317.14001 · doi:10.1007/BF01390174
[5] Artin, M., Swinnerton-Dyer, H.P.F.: The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math.20, 165-189 (1973) · Zbl 0289.14003 · doi:10.1007/BF01394097
[6] Beauville, A.: Surfaces algebriques complexes. Asterisque54 (1978) · Zbl 0394.14014
[7] Berthelot, P., Ogus, A.:F-isocrystals and de Rham cohomology. I. Invent. Math. (to appear) · Zbl 0516.14017
[8] Blass, P.: Unirationality of Enriques surfaces in characteristic two. Compositio Math.45, 393-398 (1982) · Zbl 0549.14019
[9] Bombieri, E., Mumford, D.: Enriques classification of surfaces in charp. III. Invent. Math.35, 197-232 (1976) · Zbl 0336.14010 · doi:10.1007/BF01390138
[10] Burns, D., Wahl, J.: Local contributions to global deformations of surfaces. Invent. Math.26, 67-88 (1974) · Zbl 0288.14010 · doi:10.1007/BF01406846
[11] Crew, R.: Etalep-covers in characteristicp (preprint)
[12] Deligne, P.: Relevement des surfaces K3 en caracteristique nulle. In: Surfaces algébriques. Lecture Notes in Mathematics, Vol. 868, pp. 58-79, Berlin, Heidelberg, New York: Springer 1981
[13] Demazure, M.: Surfaces de del Pezzo IV-systemes anticanoniques. In: Séminaire sur les Singularités des Surfaces. Lecture Notes in Mathematics. Vol. 777, pp. 150-60, Berlin, Heidelberg, New York: Springer 1980
[14] Griffiths, P.: Periods of integrals on algebraic manifolds. II. Am. J. Math.90, 805-865 (1969) · Zbl 0183.25501 · doi:10.2307/2373485
[15] Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, Vol. 52. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0367.14001
[16] Horikawa, E.: On the periods of Enriques surfaces. I, II. Math. Ann.234, 73-88 (1978);235, 217-246 (1978) · Zbl 0371.14019 · doi:10.1007/BF01409342
[17] Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup.12, 501-661 (1979) · Zbl 0436.14007
[18] Lang, W.E.: Two theorems on de Rham cohomology. Compositio Math.40, 417-423 (1980) · Zbl 0508.14011
[19] Lang, W.E.: A short proof of Castelnuovo’s criterion of rationality. Trans. Am. Math. Soc.264, 579-582 (1981) · Zbl 0537.14013
[20] Lang, W.E.: Classical Godeaux surfaces in characteristicp. Math. Ann.256, 419-427 (1981) · Zbl 0524.14036 · doi:10.1007/BF01450537
[21] Lang, W.E., Nygaard, N.O.: A short proof of the Rydakov-Saferevic theorem. Math. Ann.251, 171-173 (1980) · Zbl 0457.14018 · doi:10.1007/BF01536183
[22] Morrison, D.: Semistable degeneration of Enriques’ and hyperelliptic surfaces. Duke Math. J.48, 197-249 (1981) · Zbl 0476.14015 · doi:10.1215/S0012-7094-81-04813-4
[23] Mumford, D.: Pathologies of modular algebraic surfaces. Am. J. Math.83, 339-342 (1961) · Zbl 0138.42002 · doi:10.2307/2372959
[24] Mumford, D.: Enriques’ classification of surfaces in characteristicp I. In: Global analysis. pp. 325-339. Princeton: Princeton University Press 1969
[25] Oda, T.: The first de Rham cohomology group and Dieudonné modules. Ann. Sci. Ecole Norm. Sup.2, 63-135 (1969) · Zbl 0175.47901
[26] Ogus, A.: Supersingular K3 crystals. Asterisque64, 3-86 (1979)
[27] Ramanujan, C.P.: Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc.36, 41-51 (1972) · Zbl 0276.32018
[28] Rudakov, A.N., Shafarevich, I.R.: Inseparable morphisms of algebraic surfaces. Math. USSR Izva.10, 1205-1237 (1976) · Zbl 0379.14006 · doi:10.1070/IM1976v010n06ABEH001833
[29] Rudakov, A.N., Shafarevich, I.R.: Supersingular K3 surfaces over fields of characteristic two. Math. USSR Izva.13, 147-165 (1979) · Zbl 0424.14008 · doi:10.1070/IM1979v013n01ABEH002016
[30] Serre, J.-P.: A course in arithmetic. In: Graduate Texts in Mathematics, Vol. 7. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0256.12001
[31] Shafarevich, I.R.: Algebraic surfaces. Proc. Steklov Inst. Math.75 (1965) · Zbl 0154.21001
[32] Shah, J.: Projective degenerations of Enriques’ surfaces. Math. Ann.256, 475-495 (1981) · Zbl 0459.14007 · doi:10.1007/BF01450543
[33] Suwa, N.: De Rham cohomology of algebraic surfaces withq=?p a in charp (preprint)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.