Chang, S. Y. A.; Wilson, J. M.; Wolff, T. H. Some weighted norm inequalities concerning the Schrödinger operators. (English) Zbl 0575.42025 Comment. Math. Helv. 60, 217-246 (1985). On examine certaines questions relatives à l’inégalité \[ (*)\quad \int_{{\mathbb{R}}^ d}| u|^ 2 v dx\leq c\int_{{\mathbb{R}}^ d}| \nabla u|^ 2 dx,\quad u\in {\mathcal C}_ 0^{\infty}, \] où c est une constante et \(v\geq 0\). En particulier, ou prouve que si \(\phi\) : [0,\(\infty)\to [1,\infty)\) est croissante, \(\int^{\infty}_{1}\) dx/x \(\phi\) (x)\(<\infty\) et \[ \sup_{Q}(1/| Q|)\quad \int_{Q}v(x) \ell (Q)^ 2 \phi (v(x) \ell (Q)^ 2)dx<\infty, \] où Q est une cube de \({\mathbb{R}}^ d\), de côté \(\ell (Q)\), alors on vérifie (*). Reviewer: V.Iftimie Cited in 7 ReviewsCited in 120 Documents MSC: 42B25 Maximal functions, Littlewood-Paley theory 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis 47B25 Linear symmetric and selfadjoint operators (unbounded) 35J10 Schrödinger operator, Schrödinger equation Keywords:Schrödinger operator; weighted norm inequalities; Lusin area function PDF BibTeX XML Cite \textit{S. Y. A. Chang} et al., Comment. Math. Helv. 60, 217--246 (1985; Zbl 0575.42025) Full Text: DOI EuDML OpenURL