# zbMATH — the first resource for mathematics

La formule de Poisson-Plancherel pour un groupe de Takiff associé à un groupe de Lie semi-simple à centre fini. (The Poisson-Plancherel formula for a Takiff group associated to a semi-simple Lie group with finite centre). (French) Zbl 0575.43005
The semi-direct product of a semi-simple Lie group with finite centre by its Lie algebra is called a Takiff group. This paper establishes the Plancherel formula for such a group, as conjectured by M. Vergne [cf. Ann. Math., II. Ser. 115, 639-666 (1982; Zbl 0501.43006)]. The main technical problem is to define an analogue of orbital integrals which makes sense at singular points, and to calculate its Fourier transform.
Reviewer: J.Repka

##### MSC:
 43A80 Analysis on other specific Lie groups 22E46 Semisimple Lie groups and their representations 22E30 Analysis on real and complex Lie groups
Full Text:
##### References:
 [1] Bernat, P, Représentations des groupes de Lie résolubles, () · Zbl 0219.43012 [2] Duflo, M, Représentations unitaires des groupes de Lie et méthode des orbites, () · Zbl 0492.22008 [3] Duflo, M, Construction de représentations unitaires d’un groupe de Lie, () · Zbl 0522.22011 [4] Guinzburg, V.A, Fast decreasing functions and characters of real algebraic groups, Funct. anal. appl., 16, 1, 53-54, (1982) [5] Khalgui, M.S, Caractères des groupes de Lie, J. funct. anal., 47, 1, 64-77, (1982) · Zbl 0507.22009 [6] Kleppner, A; Lipsman, R, The Plancherel formula for group extensions II, Ann. sci. école norm. sup., 6, 103-132, (1973), (4) · Zbl 0258.43001 [7] Rossman, W, Limit characters of reductive Lie groups, Invent. math., 61, 53-66, (1980) · Zbl 0437.22013 [8] Saad, S, Représentation co-adjointe et idéaux primitifs pour une classe d’algèbres de Lie, () [9] Takiff, S.J, Rings of invariant polynomials for a class of Lie algebras, Trans. amer. math. soc., 160, 249-262, (1971) · Zbl 0232.22027 [10] Varadarajan, V.S, Harmonic analysis on reductive Lie groups, () · Zbl 0354.43001 [11] Vergne, M, A Plancherel formula without group representations, () [12] Vergne, M, A Poisson-Plancherel formula for semi-simple Lie groups, Ann. of math., 115, 639-666, (1982) · Zbl 0501.43006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.