zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A linear recognition algorithm for cographs. (English) Zbl 0575.68065
Cographs are the graphs formed from a single vertex under the closure of the operations of union and complement. Another characterization of cographs is that they are the undirected graphs with no induced paths on four vertices. Cographs arise naturally in such application areas as examination scheduling and automatic clustering of index terms. Furthermore, it is known that cographs have a unique tree representation called a cotree. Using the cotree it is possible to design very fast polynomial time algorithms for problems which are intractable for graphs in general. Such problems include chromatic number, clique determination, clustering, minimum weight domination, isomorphism, minimum fill-in and Hamiltonicity. In this paper we present a linear time algorithm for recognizing cographs and constructing their cotree representation.

68R10Graph theory in connection with computer science (including graph drawing)
Full Text: DOI