zbMATH — the first resource for mathematics

Discontinuous energy minimizers in nonlinear elastostatics: An example of J. Ball revisited. (English) Zbl 0575.73021
[Compare J. M. Ball, Philos. Trans. R. Soc. London, A 306, 557-611 (1982; Zbl 0513.73020).]
Simple direct methods of the calculus of variations, together with mild a priori restrictions of a constitutive nature, are exploited to show that a uniform radial displacement at the boundary fails to induce a homogeneous radial expansion of a compressible elastic ball when the boundary displacement reaches a critical value (of which an explicit lower bound is offered): rather, above the critical value, energy minimizers are radial deformations with a hole at the center, and are accompanied by a stress field with radial stress vanishing, and circumferential stress unbounded, at the surface of the hole.

74S30 Other numerical methods in solid mechanics (MSC2010)
74B20 Nonlinear elasticity
Full Text: DOI
[1] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.Phil. Trans. Roy. Soc. London A 306 (1982) 557-611. · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[2] J.M. Ball, Strict convexity, strong ellipticity, and regularity in the calculus of variation,Math. Proc. Camb. Phil. Soc. 87 (1980) 501-513. · Zbl 0451.35028 · doi:10.1017/S0305004100056930
[3] J.M. Ball, Remarques sur l’existence et la régularité des solutions d’elastostatique nonlineaire. In: H. Berrestycki and H. Brezis (ed.)Recent Contributions to Nonlinear Partial Differential Equations, Pitman, 1981.
[4] C. Truesdell and W. Noll, The non-linear field theories of mechanics, In: S. Flügge (ed.)Handbuch der Physik III/3. Berlin-Heidelberg-New York, Springer-Verlag, 1965. · Zbl 0779.73004
[5] P. Podio-Guidugli, Balls with holes: examples of non-regular solutions in elastostatics, Atti 13\(\deg\) Convegno C.I.R.M., ?Problemi Matematici nella Meccanica dei Continui?, M. Miranda & R. Temam eds., Trento, 1981. · Zbl 0506.73042
[6] H.L. Royden,Real Analysis, Colliers MacMillan Int. Eds.,, 2nd edn., 1968.
[7] G.H. Hardy, J.E. Littlewood and G. Polya,Inequalities, Cambridge University Press, Cambridge 1952.
[8] A.N. Gent and P.B. Lindley, Internal rupture of bounded rubber cylinders in tension.Proc. Royal Soc. A 249 (1958) 195-205.
[9] R.W. Ogden, Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubber-like solids.Proc. Roy. Soc. London A 326 (1972) 565-584; & A 328 (1972) 567-583. · Zbl 0257.73034 · doi:10.1098/rspa.1972.0026
[10] P. Podio-Guidugli, De Giorgi’s counterexample in elasticity,Quart. Appl. Math. 34 (1977) 411-419. · Zbl 0351.73022
[11] C. Calderer, The dynamical behavior of nonlinear elastic spherical shells.J. Elasticity 13 (1983) 17-47. · Zbl 0514.73104 · doi:10.1007/BF00041312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.