Drezner, Zvi; Gavish, Bezalel \(\epsilon\)-approximations for multidimensional weighted location problems. (English) Zbl 0575.90021 Oper. Res. 33, 772-783 (1985). This paper considers the multidimensional weighted minimax location problem, namely, finding a facility location that minimizes the maximal weighted distance to n points. General distance norms are used. An \(\epsilon\)-approximate solution is obtained by applying a variant of the Russian method for the solution of Linear Programming. The algorithm has a time complexity of O(n log \(\epsilon)\) for fixed dimensionality k. Computational results are presented. Cited in 1 Document MSC: 90B05 Inventory, storage, reservoirs 90C90 Applications of mathematical programming 90C05 Linear programming Keywords:multidimensional weighted minimax location; epsilon-approximate solution × Cite Format Result Cite Review PDF Full Text: DOI