×

On the Kodaira dimensions of Hilbert modular varieties. (English) Zbl 0576.14036

Let K be a totally real algebraic number field of degree \(n>1\). The group \(\Gamma =SL_ 2({\mathfrak O}_ K)\) acts on \({\mathbb{H}}^ n\) by the modular substitution. For a subgroup G of Aut(K/\({\mathbb{Q}})\), acting on \({\mathbb{H}}^ n\) as permutations of the coordinates, denote by \({\hat \Gamma}\) the composite of G and \(\Gamma\). The variety \(X:={\mathbb{H}}^ n/{\hat \Gamma}\) can be compactified by adding a finite number of cusps. The non-singular model \(\tilde X\) of this compactification is called Hilbert modular variety if \(G=\{1\}\) and symmetric Hilbert modular variety if \(G\neq \{1\}.\)
The author shows that \(\tilde X\) is of general type except for a finite number of fields K. In particular all Hilbert modular varieties of dimension larger than six and all symmetric Hilbert modular varieties of dimension larger than nine are of general type. - Denote by \(X_ 0\) the complement of the fixed points in X. To each (symmetric) Hilbert modular form of weight k corresponds a section of \(H^ 0(X_ 0,\Omega^{\otimes k})\). In his proof the author uses a criterion of Tai to show that for \(n>2\), except for a finite number of fields K, these sections extend to all of X. Then he discusses their extendability to \(\tilde X\) and shows, that for large N, the dimension of \(H^ 0(\tilde X,\Omega^{\otimes N})\) growths like \(N^ n\), in other words, the Kodaira dimension is equal to n and \(\tilde X\) is of general type. In the case of \(n=2\), the author refers to results of F. Hirzebruch and D. Zagier [in Complex Anal. algebr. Geom., Collect. Pap. dedic. K. Kodaira, 43-77 (1977; Zbl 0354.14011)] in the case of Hilbert modular varieties and to the thesis of D. Bassendowski [”Klassifikation Hilbertscher Modulflächen”, Bonn, Math. Schr. 163 (1985)] in the case of symmetric Hilbert modular varieties.
Reviewer: J.Koehl

MSC:

14J10 Families, moduli, classification: algebraic theory
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
14J25 Special surfaces

Citations:

Zbl 0354.14011
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactification of locally symmetric varieties. Brookline, Massachusetts: Math. Sci. Press 1975 · Zbl 0334.14007
[2] Bassendowski, D.: Klassifikation Hilbertscher Modulflächen zur symmetrischen Hurwitz-Maass-Erweiterung. Dissertation, Bonn, 1984 · Zbl 0594.14030
[3] Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math.67, 23-86 (1982) · Zbl 0506.14016 · doi:10.1007/BF01393371
[4] Hirzebruch, F.: Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe. Ann. Sci. Éc. Norm. Super.11, 101-165 (1978) · Zbl 0384.14011
[5] Hirzebruch, F., Zagier, D.: Classification of Hilbert modular surfaces. In: Complex analysis and algebraic geometry, pp. 43-77. Iwanami shoten, 1977 · Zbl 0354.14011
[6] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embedding, I. Lect. Notes Math. 339, Berlin-Heidelberg-New York: Springer 1973 · Zbl 0271.14017
[7] Knöller, F.W.: Ein Beitrag zur Klassifikationstheorier der Hilbertschen Modulflächen. Arch. Math.26, 44-50 (1975) · Zbl 0327.14010 · doi:10.1007/BF01229701
[8] Knöller, F.W.: Über die Plurigeschechter Hilbertscher Modulmannigfaltigkeiten. Math. Ann.264, 413-422 (1983) · Zbl 0515.14022 · doi:10.1007/BF01456951
[9] Lang, S.: Algebraic number theory. Reading, MA: Addison-Wesley 1970 · Zbl 0211.38404
[10] Prestel, A.: Die elliptischen Fixpunkte der Hilbertschen Modulgruppen. Math. Ann.177, 181-209 (1968) · Zbl 0159.11302 · doi:10.1007/BF01350863
[11] Shimizu, H.: On discontinuous groups operating on the product of the upper half planes. Ann. Math.77, 33-71 (1963) · Zbl 0218.10045 · doi:10.2307/1970201
[12] Siegel, C.L.: Lecture on advanced analytic number theory. Tata Institute, 1961
[13] Tai, Y.: On the Kodaira dimension of the moduli space of abelian varieties. Invent. Math.71, 425-439 (1983) · Zbl 0508.14038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.