Kottwitz, Robert E. Stable trace formula: Cuspidal tempered terms. (English) Zbl 0576.22020 Duke Math. J. 51, 611-650 (1984). Let G be a reductive group over a number field F. The meaning and the importance of a ”stable” trace formula for G are explained by R. P. Langlands in ”Les débuts d’une formule des traces stable” [Publ. Math. Univ. Paris VII, 13 (1983; Zbl 0532.22017)]. There he gives explicitly the stabilization of the regular elliptic part of the trace formula. In particular, he defines, for any elliptic endoscopic group H of G, a number \(\iota\) (G,H) relating the stable trace formula for H to the trace formula for G. In the present paper the author proves an identity for \(\iota\) (G,H) involving Tamagawa numbers. He uses this expression for \(\iota\) (G,H) in a ”speculative” consideration concerning the tempered cuspidal part of the trace formula and its stabilization. Reviewer: J.G.M.Mars Cited in 7 ReviewsCited in 130 Documents MSC: 22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings 11F70 Representation-theoretic methods; automorphic representations over local and global fields 12G05 Galois cohomology Keywords:cohomology; reductive group; trace formula; elliptic endoscopic group; stable trace formula; Tamagawa numbers Citations:Zbl 0532.22017 PDFBibTeX XMLCite \textit{R. E. Kottwitz}, Duke Math. J. 51, 611--650 (1984; Zbl 0576.22020) Full Text: DOI References: [1] A. Borel, Automorphic \(L\)-functions , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27-61. · Zbl 0412.10017 [2] H. Cartan and S. Eilenberg, Homological Algebra , Princeton Univ. Press, Princeton, N. J., 1956. · Zbl 0075.24305 [3] G. Hochschild, The Structure of Lie Groups , Holden-Day Inc., San Francisco, 1965. · Zbl 0131.02702 [4] R. Hoobler, A cohomological interpretation of Brauer groups of rings , Pacific J. Math. 86 (1980), no. 1, 89-92. · Zbl 0459.13002 · doi:10.2140/pjm.1980.86.89 [5] R. Kottwitz, Rational conjugacy classes in reductive groups , Duke Math. J. 49 (1982), no. 4, 785-806. · Zbl 0506.20017 · doi:10.1215/S0012-7094-82-04939-0 [6] 1 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak p\)-adischen Körpern. I , Math. Z. 88 (1965), 40-47. · Zbl 0143.04702 · doi:10.1007/BF01112691 [7] 2 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak p\)-adischen Körpern. II , Math. Z. 89 (1965), 250-272. · Zbl 0143.04702 · doi:10.1007/BF01112691 [8] J-P. Labesse and R. P. Langlands, \(L\)-indistinguishability for \(\mathrm SL(2)\) , Canad. J. Math. 31 (1979), no. 4, 726-785. · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3 [9] R. P. Langlands, Stable conjugacy: definitions and lemmas , Canad. J. Math. 31 (1979), no. 4, 700-725. · Zbl 0421.12013 · doi:10.4153/CJM-1979-069-2 [10] R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 205-246. · Zbl 0447.12009 [11] R. P. Langlands, Les débuts d’une formule des traces stable , Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII U.E.R. de Mathématiques, Paris, 1983. · Zbl 0532.22017 [12] J. S. Milne and K.-Y. Shih, Conjugates of Shimura varieties , Hodge Cycles, Motives and Shimura Varieties, Lecture notes in mathematics, vol. 900, Springer-Verlag, 1982, pp. 280-356. · Zbl 0478.14029 [13] T. Ono, On Tamagawa numbers , Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 122-132. · Zbl 0223.20050 [14] M. Rosenlicht, Toroidal algebraic groups , Proc. Amer. Math. Soc. 12 (1961), 984-988. JSTOR: · Zbl 0107.14703 · doi:10.2307/2034407 [15] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres , J. Reine Angew. Math. 327 (1981), 12-80. · Zbl 0468.14007 · doi:10.1515/crll.1981.327.12 [16] S. S. Shatz, Profinite Groups, Artithmetic, and Geometry , Annals of Math. Studies, vol. 67, Princeton University Press, Princeton, N.J., 1972. · Zbl 0236.12002 [17] D. Shelstad, \(L\)-indistinguishability for real groups , Math. Ann. 259 (1982), no. 3, 385-430. · Zbl 0506.22014 · doi:10.1007/BF01456950 [18] J. Tate, Duality theorems in Galois cohomology over number fields , Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295. · Zbl 0126.07002 [19] J. Tate, The cohomology groups of tori in finite Galois extensions of number fields , Nagoya Math. J. 27 (1966), 709-719. · Zbl 0146.06501 [20] J. Tate, Number theoretic background , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26. · Zbl 0422.12007 [21] J. Tits, Reductive groups over local fields , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69. · Zbl 0415.20035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.