×

How to define the differentiable graph of a singular foliation. (English) Zbl 0576.57023

This paper is devoted to the generalization of the graph (holonomy groupoid) of a foliation [Ch. Ehresmann, Proc. fifth Canad. Math. Congr., Montreal 1961, 109-172 (1963; Zbl 0146.195); Oeuvres complètes et commentées. Catégories ordonnées, applications des ordres en topologie, Partie II, 2., Suppl. à Cah. Topologic Géom. Différ. 23, 435-778 (1982; Zbl 0529.01017), pp. 563-626; H. E. Winkelnkemper, Ann. Global Anal. Geom. 1, No.3, 51-75 (1983; Zbl 0526.53039)] to foliations with singularities in the sense of P. Stefan [Proc. Lond. Math. Soc., III. Ser. 29, 699-713 (1974; Zbl 0342.57015)].
We quote from the author’s summary: ”For a large class of singular foliations in the sense of Stefan, we construct a differentiable groupoid which generalizes the graph of a regular foliation; this attaches to every singular leaf a differentiable principal bundle which is an extension of the holonomy covering defined by Ehresmann for the locally simple topological foliations. The construction uses a diagram description of regular equivalences and their transverse isomorphisms as well as of the composition of their regular graphs. Then, this description is weakened so as to take care of the possible singularities.”
Reviewer: I.Vaisman

MSC:

57R30 Foliations in differential topology; geometric theory

References:

[1] 1 M. Bauer , Feuilletages presque réguliers , C.R.A.S. Paris 299 , 9 ( 1984 ), 387 - 390 MR 764089 | Zbl 0571.57024 · Zbl 0571.57024
[2] 2 N. Bourbaki , Théorie des Ensembles , Hermann . · Zbl 0282.04001
[3] 3 N. Bourbaki , Variétés. Résultats , Hermann . · Zbl 0206.50402
[4] 4 C. Chevalley , Theory of Lie groups , Hermann . · Zbl 0063.00842
[5] 5 A. Connes , A survey of foliations and operator algebras , I.H.E.S. , 1981 . · Zbl 0461.46043
[6] 6 P. Dazord , Holonomie des feuilletages singuliers , C.R.A.S. Paris 298 , 2 ( 1984 ), 27 - 30 . MR 740083 | Zbl 0571.57023 · Zbl 0571.57023
[7] 7 C. Ehresmann , Catégories topologiques et catégories différentiables , Coll. Géom. Diff. Globale Bruxelles, C.B.R.M. 1959 ; re-edited in ” Charles Ehresmann: Oeuvres complètes et commentées ”, Partie I, Amiens 1984 , 237 - 250 . MR 116360 | Zbl 0205.28202 · Zbl 0205.28202
[8] 8 C. Ehresmann , Sur les catégories différentiables , Atti Conv. Int. Geom Diff. Bologna 1967 ; re-edited in ” Charles Ehresmann: Oeuvres completes et commentées ”, Partie I, Amiens 1984 , 261 - 270 . Zbl 0241.53019 · Zbl 0241.53019
[9] 9 C. Ehresmann , Structures feuilletées , Proc. 5th Can. Math. Cong. Montréal 1961 , re-edited in ” Charles Ehresmann: Oeuvres complètes et commentées ”, Partie 11-2, 563 - 626 . Zbl 0146.19501 · Zbl 0146.19501
[10] 10 A. Grothendieck , Sur quelques points d’algèbre homologique , Tohoku Math. J. Série 2 , 9 ( 1957 ), 119 - 221 . Article | MR 102537 | Zbl 0118.26104 · Zbl 0118.26104
[11] 11 A. Haefliger , Groupoides d’holonomie et classifiants , Astérisque 116 ( 1984 ), 70 - 97 . MR 755163 | Zbl 0562.57012 · Zbl 0562.57012
[12] 12 A. Haefliger , Pseudogroup of local isometries , 5th Int. Coll. Dif. Geom. Santiago de Compostela 1984 , Res. Notes in Math. ( 1985 ), Pitman . MR 864868 | Zbl 0656.58042 · Zbl 0656.58042
[13] 13 A. Lichnerowicz , Feuilletages généralisés et algèbres de Lie de Kirillov , Idem.
[14] 14 S. Mac Lane , Categories for the working mathematician , Springer 1971 . MR 1712872 | Zbl 0906.18001 · Zbl 0906.18001
[15] 15 J. Pradines , Théorie de Lie pour les groupoides différentiables , C.R.A.S. Paris 263 ( 1966 ), 907 - 910 . MR 214103 | Zbl 0147.41102 · Zbl 0147.41102
[16] 16 J. Pradines , Calcul différentiel dans la catégorie des groupoides infinitésimaux , C.R.A.S. Paris 264 ( 1967 ), 245 - 248 . MR 216409 | Zbl 0154.21704 · Zbl 0154.21704
[17] 17 J. Pradines , Géométrie différentielle au-dessus d’un groupoide , C.R.A.S. Paris 266 ( 1968 ), 1194 - 1196 . MR 231306 | Zbl 0172.03601 · Zbl 0172.03601
[18] 18 J. Pradines , Building categories in which a Godement Theorem is available , Cahiers Top. et Géom. Diff. XVI- 3 ( 1975 ), 301 - 306 . Zbl 0329.18018 · Zbl 0329.18018
[19] 19 J. Pradines , Holonomie et graphes locaux , C.R.A.S. Paris 298 , 13 ( 1984 ), 297 . MR 765427 | Zbl 0568.57018 · Zbl 0568.57018
[20] 20 P. Štefan , Accessible sets, orbits, and foliations with singularities , Proc. London Math. Soc. 29 ( 1974 ), 699 - 713 . MR 362395 | Zbl 0342.57015 · Zbl 0342.57015 · doi:10.1112/plms/s3-29.4.699
[21] 21 H. Sussmann , Orbits of families of vector fields and integrability of distributions , Trans. A.M.S. 180 ( 1973 ), 171 - 188 . MR 321133 | Zbl 0274.58002 · Zbl 0274.58002 · doi:10.2307/1996660
[22] 22 W.T. Van Est , Rapport sur les S-atlas , Astérisque 116 ( 1984 ), 236 - 292 . MR 755174 | Zbl 0543.58003 · Zbl 0543.58003
[23] 23 H.E. Winkelnkemper , The graph of a foliation , Ann. Glob. Anal. Geom. ( 1982 ). MR 739904 | Zbl 0526.53039 · Zbl 0526.53039 · doi:10.1007/BF02329732
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.