×

Asymptotic expansions for probabilities of large deviations for sums of independent random variables in the case of violation of Cramer’s condition. (Russian) Zbl 0576.60021

Teor. Veroyatn. Mat. Stat. 31, 19-25 (1984).
Let \(X_ 1,X_ 2,..\). be independent and identically distributed random variables with a polynomial upper tail \(P\{X_ 1>x\}=\sum^{k}_{i=1}c_ ix^{-\alpha_ i}+o(x^{-\alpha_ 1- q})\), as \(x\to \infty\), where \(c_ 1,...,c_ k>0\), \(2<\alpha_ 1<...<\alpha_ k\leq \alpha_ 1+q\), \(q>0\), and assume \(EX_ 1=0\) and \(E| X_ 1|^ r<\infty\) for some \(2<r<\min (\alpha_ 1,3)\). The author derives the asymptotic expansion of the form \[ P\{X_ 1+...+X_ n>x\}=n\{P\{X_ 1>x\}+\sum^{k}_{i=1}c_ ig(n,r,c_ i,x\quad,\epsilon)x^{-\alpha_ i}\}+o(n^{(5-r)/2}x^{-\alpha_ 1- 1})+o(nx^{-\alpha_ 1-q}), \] as \(n\to \infty\), valid for \(x\geq n^{1/2+\epsilon}\) with an arbitrary \(\epsilon >0\), where the coefficient function g is explicitly given.
Reviewer: S.Csörgö

MSC:

60F10 Large deviations