zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the computation of incomplete gamma functions in the complex domain. (English) Zbl 0577.65015
The authors discuss in detail the usefulness of continued fraction expansions for the numerical computation of the incomplete gamma function $\gamma$ (a,z) for complex values of a and z. Using functional relations for $\gamma$ (a,z), the complementary function $\Gamma$ (a,z) and the (related) special Kummer function M(l,b,z), they introduce what they call ”additional (or extended)” continued fraction expansions, which they show to be stable when evaluated by the backward recurrence algorithm. A thorough error analysis is presented and the special cases of $\gamma$ (a,z) and $\Gamma$ (a,z) which correspond to the error functions erf(z), erfc(z) and the exponential integral $E\sb n(z)$ are discussed in detail. In connections with the complex error function, the ”anomalous convergence” of general T-fractions (the two point Padé approximants) is discussed.
Reviewer: K.S.Kölbig

65D20Computation of special functions, construction of tables
33B15Gamma, beta and polygamma functions
33B20Incomplete beta and gamma functions
33C60Hypergeometric integrals and functions defined by them
Full Text: DOI
[1] Jr., G. A. Baker: Best error bounds for Padé approximants to convergent series of Stieltjes. J. math. Phys. 10, 814-820 (1969) · Zbl 0175.36101
[2] Christopher Baltus and William B. Jones. Truncation error bounds for limit-periodic continued fractions K(an/1) with lim an=0, Numer. Math., to appear. · Zbl 0564.40002
[3] Common, A. K.: Padé approximants and bounds to series of Stieltjes. J. math. Phys. 9, No. 1, 32-38 (1968) · Zbl 0162.37201
[4] Davis, Philip J.: Gamma function and related functions. Handbook of mathematical functions 55, 253-269 (1964)
[5] Gautschi, Walter: Error function and fresnel integrals. Handbook of mathematical functions 55, 295-329 (1964)
[6] Gautschi, Walter: Algorithm 363--complex error function. Comm. ACM 12, 635 (1969)
[7] Gautschi, Walter: Efficient computation of the complex error function. SIAM J. Numer. anal. 7, 187-198 (1970) · Zbl 0204.48304
[8] Gautschi, Walter: An evaluation procedure for incomplete gamma functions. MRC tech. Summary report # 1717 (February 1977)
[9] Gautschi, Walter: Anomalous convergence of a continued fraction for ratios of Kummer function. Math. comp. 31, No. 140, 994-999 (October 1977) · Zbl 0373.33002
[10] Gautschi, Walter: A computational procedure for incomplete gamma functions. ACM trans. Math. software 5, 466-481 (1979) · Zbl 0429.65011
[11] Henrici, P.: Special functions, integral transforms, asymptotics and continued fractions. Applied and computational complex analysis 2 (1977) · Zbl 0363.30001
[12] Henrici, P.; Pfluger, Pia: Truncation error estimates for Stieltjes fractions. Numer. math. 9, 120-138 (1966) · Zbl 0152.15301
[13] Jones, William B.; Snell, R. I.: Truncation error bounds for continued fractions. SIAM J. Numer. anal. 6, No. 2, 210-221 (June 1969) · Zbl 0185.40602
[14] Jones, William B.; Thron, W. J.: Numerical stability in evaluating continued fractions. Math. comp. 28, No. 127, 795-810 (July 1974) · Zbl 0292.65009
[15] Jones, William B.; Thron, W. J.: Continued fractions: analytic theory and applications. Encyclopedia of mathematics and its applications 11 (1980) · Zbl 0445.30003
[16] Jones, William B.; Thron, W. J.; Waadeland, Haakon: Truncation error bounds for continued fractions $K(an/1)$ with parabolic element regions. SIAM J. Numer. anal. 20, No. 6, 1219-1230 (December 1983) · Zbl 0567.40002
[17] Mccabe, J. H.: A continued fraction expansion, with a truncation error estimate for dawson’s integral. Math. comp. 28, No. 127, 811-816 (July 1974) · Zbl 0296.41014
[18] Jr., Henry C. Thacher: Computation of the complex error function by continued fractions. Blanche anniversary volume, 315-337 (February 1967)
[19] Thron, W. J.: On parabolic convergence regions for continued fractions. Math. zeitschr. 69, 173-182 (1958) · Zbl 0081.05704
[20] Thron, W. J.: A prior truncation error estimates for continued fractions. E.B. Christoffel, 203-211 (1981)
[21] Wall, H. S.: Analytic theory of continued fractions. (1948) · Zbl 0035.03601