Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg- deVries scaling limits. (English) Zbl 0577.76030 Commun. Partial Differ. Equations 10, 787-1003 (1985). This comprehensive work aims at clarifying the correspondence between solutions of the problem of waves in an inviscid and incompressible fluid (water) and those of the system described by the Boussinesq equation and the Korteweg-deVries equation. A theorem of local existence in time and of uniqueness for solutions of the water wave problem, given initial data in some Sobolev space, is established in the long-wave regime. The long- time existence result constitutes an important ingredient in describing a rigorous correspondence of the water wave solutions in the two long-wave - i.e. Boussinesq and KdV - scaling limits. The long-wave approximation is justified in this sense of modeling water waves. The Hilbert transform for the variable fluid region, defined on the free surface of the fluid, is a singular integral operator being of central importance for the methods used in this paper. An analysis of this operator, including a uniform expansion of this operator in terms of the surface deformations and their difference quotients, is presented within the framework of this paper. Reviewer: M.Biermann Cited in 198 Documents MSC: 76B25 Solitary waves for incompressible inviscid fluids Keywords:scaling limit; Boussinesq equation; Korteweg-deVries equation; existence; uniqueness; Sobolev space; long-wave approximation; Hilbert transform; singular integral operator × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Amick C.J., Arch.Rat.Mech.Anal75 pp 9– (1980) [2] Beale J.T., Commun.pure Applied math30 pp 373– (1977) · Zbl 0379.35055 · doi:10.1002/cpa.3160300402 [3] Boussinesq J., J. Math. Pure Appl. 7 pp 55– (1872) [4] Cohen A., Arch. Rat. Mech. Anal. 79 pp 143– (1979) [5] coifman R.R., Ann. of Math. 116 pp 361– (1982) · Zbl 0497.42012 · doi:10.2307/2007065 [6] Craig, W., On water waves in the Boussinesq and Korteweg-de Vries limits, Berkeley MSRI preprint [7] Deift P., Commun.Pure Appl.Math 35 pp 567– (1982) · Zbl 0479.35074 · doi:10.1002/cpa.3160350502 [8] Deift P., Commun.pure Appl.Math 32 pp 121– (1979) · Zbl 0388.34005 · doi:10.1002/cpa.3160320202 [9] Friedrichs K.O., Commun.Pure Appl.Math 7 pp 517– (1954) · Zbl 0057.42204 · doi:10.1002/cpa.3160070305 [10] Gagliardo E., Ricerche Mat 8 pp 24– (1959) [11] Gardner C.S., J.Math.Phys 12 pp 1548– (1971) · Zbl 0283.35021 · doi:10.1063/1.1665772 [12] Kalantarov V.K., J.Soviet Math 10 pp 53– (1978) · Zbl 0388.35039 · doi:10.1007/BF01109723 [13] Kano T., J.Math.Kyoto Univ 19 pp 335– (1979) [14] Kano,T.and Nishida,T.,Water waves and Friedrich’s expansion,preprint. · Zbl 0564.76037 [15] Korteweg D.J., Phil.Mag 39 pp 422– (1895) · doi:10.1080/14786449508620739 [16] Levi-Civita T., Math.Ann 93 pp 264– (1925) · JFM 51.0671.06 · doi:10.1007/BF01449965 [17] Mckean H., Adv.Math.,Suppl.Studies 3 pp 217– (1978) [18] Moser J., Ann.Scuola Norm.Sup.Pisa 20 pp 265– (1966) [19] Nalimov V.I., Dinamika Spl.Sredy 18 pp 104– (1974) [20] Nirenberg L., Ann.Scuola Norm.Sup.Pisa,ser 13 (3) pp 116– (1959) [21] Shinbrot M., The simplest case, Ind.U.Math.J 25 pp 281– (1976) · Zbl 0329.76016 · doi:10.1512/iumj.1976.25.25023 [22] Woods L.C., The theory of subsonic plane flow (1961) · Zbl 1219.76003 [23] Yosihara, H.Gravity waves49–96. [24] Zakharov V.E., Zh.Eksp.Teor.Fig 65 pp 219– (1973) [25] Zakharov V.E., Func.Anal.Appl 5 pp 280– (1971) · Zbl 0257.35074 · doi:10.1007/BF01086739 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.