×

zbMATH — the first resource for mathematics

Velocity and energy relaxation in two-phase flows. (English) Zbl 1379.76028
Summary: We investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [M. Ishii, Thermo-fluid dynamic theory of two-phase flow. Paris: Eyrolles (1975; Zbl 0325.76135), J.-M. Rovarch, Ph. D. Thesis, École Normale Supérieure de Cachan (2006)]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be nonhyperbolic, which poses additional theoretical difficulties to construct robust numerical schemes [J.-M. Ghidaglia, Eur. J. Mech., B, Fluids 20, No. 6, 841–867 (2001; Zbl 1059.76041)]. To simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model that was recently proposed for simulation of violent aerated flows [F. Dias et al., Comput. Fluids 39, No. 2, 283–293 (2010; Zbl 1242.76329)]. The preservation of invariant regions and incompressible limit of the simplified model are also discussed. Finally, several numerical results are presented.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
Software:
NEPTUNE; CATHARE; THYC; RELAP5
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow (1975) · Zbl 0325.76135
[2] 2. J.-M. Rovarch , Solveurs tridimensionnels pour les écoulements diphasiques avec transferts d’énergie, Ph. D. Thesis, Ecole Normale Supérieure de Cachan, 2006.
[3] Ghidaglia, On the numerical solution to two fluid models via cell centered finite volume method, Eur. J. Mech. B/Fluids 20 pp 841– (2001) · Zbl 1059.76041
[4] Dias, A two-fluid model for violent aerated flows, Comput. & Fluids 39 (2) pp 283– (2010) · Zbl 1242.76329
[5] Llor, Statistical Hydrodynamic Models for Developed Mixing Instability Flows: Analytical ”0D” Evaluation Criteria, and Comparison of Single- and Two-phase flow Approaches (2005)
[6] Drew, Application of general constitutive principles to the derivation of multidimensional two-phase flow equations, Int. J. Multiphase Flow 5 pp 243– (1979) · Zbl 0434.76077
[7] Drew, The analysis of virtual mass effects in two-phase flow, Int. J. Multiphase Flow 5 (4) pp 233– (1979) · Zbl 0434.76078
[8] Boure, Handbook of Multiphase Systems (1982)
[9] Stewart, Two-phase flows: Models and methods, J. Comput. Phys 56 pp 363– (1984)
[10] Drew, Multiphase Science and Technology (1994)
[11] Ishii, Thermo-Fluid Dynamics of Two-Phase Flow (2006) · Zbl 1204.76002
[12] Staedtke, Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (ASTAR), Nucl. Eng. Des. 235 pp 379– (2005)
[13] Bestion, The physical closure laws in the CATHARE code, Nucl. Eng. Des. 124 pp 229– (1990)
[14] 14. V. H. Ransom , RELAP5/MOD2 code manual, Technical Report NUREG/CR-4312, EGG-23986, Idaho Engineering Laboratory, 1985.
[15] Aubry, The THYC three-dimensional thermal-hydraulic code for rod bundles: Recent developments and validation tests, Nucl. Technol. 112 (3) pp 331– (1995)
[16] Bestion, Status and perspective of two-phase flow modelling in the NEPTUNE multi-scale thermal-hydraulic platform for nuclear reactor simulation, Nucl. Eng. Technol. 37 (6) pp 511– (2005)
[17] Galassi, Two-phase flow simulations for PTS investigation by means of Neptune_CFD code, Sci. Technol. Nucl. Install. 2009 pp 12– (2009)
[18] Guelfi, NEPTUNE: A new software platform for advanced nuclear thermal hydraulics, Nucl. Sci. Eng. 156 (3) pp 281– (2007)
[19] Hirt, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 pp 201– (1981) · Zbl 0462.76020
[20] Scardovelli, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 pp 567– (1999)
[21] Osher, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 78 pp 12– (1988) · Zbl 0659.65132
[22] Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 pp 146– (1994) · Zbl 0808.76077
[23] Glimm, Robust computational algorithms for dynamic interface tracking in three dimensions, SIAM J. Sci. Comput. 21 (6) pp 2240– (2000) · Zbl 0969.76062
[24] Larrouturou, How to preserve the mass fraction positivity when computing compressible multi-component flows, J. Comput. Phys. 95 pp 59– (1990) · Zbl 0725.76090
[25] Anderson, Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech. 30 pp 139– (1998) · Zbl 1398.76051
[26] Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys. 142 pp 208– (1998) · Zbl 0934.76062
[27] 27. D. Dutykh , Mathematical modelling of tsunami waves, Ph.D. Thesis, École Normale Supérieure de Cachan, 2007.
[28] Dias, A compressible two-fluid model for the finite volume simulation of violent aerated flows, Analytical properties and numerical results pp 1– (2008)
[29] 29. F. Dias , D. Dutykh , and J.-M. Ghidaglia , Simulation of free surface compressible flows via a two fluid model, in Proceedings of OMAE2008 27th International Conference on Offshore Mechanics and Arctic Engineering, June 15-20, 2008, Estoril, Portugal, 2008.
[30] Allaire, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 pp 577– (2002) · Zbl 1169.76407
[31] Dellacherie, On a diphasic low Mach number system, ESAIM: M2AN 39 pp 487– (2005) · Zbl 1075.35038
[32] Ghidaglia, The normal flux method at the boundary for multidimensional finite volume approximations in cfd, Eur. J. Mech. B/Fluids 24 pp 1– (2005) · Zbl 1060.76076
[33] Chapman, The Mathematical Theory of Non-Uniform Gases (1995)
[34] Baer, An experimental and theoretical study of deflagration-to-detonation transition (DDT) in the granular explosive, Combust. Flame 65 (1) pp 15– (1986)
[35] Baer, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase flow 12 (6) pp 861– (1986) · Zbl 0609.76114
[36] Murrone, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys. 202 pp 664– (2005) · Zbl 1061.76083
[37] Meyapin, The Fourth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing (2009)
[38] Fourier, Théorie analytique de la chaleur (1822)
[39] Ransom, Hyperbolic two-pressure models for two-phase flows revisited, J. Comput. Phys. 75 pp 498– (1988) · Zbl 0639.76105
[40] Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Archives Néerlandaises des Sciences Exactes et Naturelles 6 pp 1– (1901)
[41] Bresch, On global weak solutions to a generic two-fluid model, Arch. Ration. Mech. Anal. (2009)
[42] Arai, Characteristic and stability analyses for two-phase flow equation system with viscous terms, Nucl. Sci. Eng. 74 pp 74– (1980)
[43] 43. D. Ramos , Quelques résultats mathématiques et simulations numériques d’écoulements régis par des modèles bifluides, Ph. D. Thesis, CMLA, Ecole Normale Supérieure de Cachan, 2000.
[44] Ghidaglia, Une méthode volumes-finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation, C. R. Acad. Sci. I 322 pp 981– (1996)
[45] Callen, Thermodynamics and an Introduction to Thermostatistics (1985) · Zbl 0989.80500
[46] Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (1973) · Zbl 0268.35062
[47] Godlewski, Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996) · Zbl 0860.65075
[48] Chueh, Positively invariant regions for systems of nonlinear equations, Ind. U. Math. J. 26 pp 373– (1977) · Zbl 0368.35040
[49] Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. Univ. Roma 8 pp 295– (1975) · Zbl 0312.35043
[50] Smoller, Shock waves and Reaction-Diffusion Equations (1994) · Zbl 0807.35002
[51] Majda (1982)
[52] Klainerman, Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 pp 629– (1982) · Zbl 0478.76091
[53] Majda, The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Tech. 42 pp 185– (1985)
[54] Kumbaro, Comparison of low Mach number models for natural convection problems, Heat Mass Transfer 36 pp 567– (2000)
[55] Dellacherie, Numerical resolution of a potential diphasic low Mach number system, J. Comput. Phys. 223 pp 151– (2007) · Zbl 1163.76035
[56] Chen, Two-dimensional Navier-Stokes simulation of breaking waves, Phys. Fluids 11 (1) pp 121– (1999) · Zbl 1147.76356
[57] Joseph, Fundamentals of Two-Fluid Dynamics (1993)
[58] Etienne, Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches, Ann. Glaciol. 38 (5) pp 379– (2004)
[59] Dutykh, Numerical simulation of powder-snow avalanche interaction with an obstacle, Appl. Math. Modell. (2009)
[60] Kroner, Numerical Schemes for Conservation Laws (1997)
[61] Barth, Encyclopedia of Computational Mechanics (2004)
[62] Barth, The design and application of upwind schemes on unstructured meshes, AIAA 0366 (1989)
[63] Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations, Lecture series-van Karman Institute for Fluid Dynamics 5 pp 1– (1994)
[64] Kolgan, Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Uchenye Zapiski TsaGI [Sci. Notes Central Inst. Aerodyn 6 (2) pp 1– (1975)
[65] Kolgan, Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics, Uchenye Zapiski TsaGI [Sci. Notes Central Inst. Aerodyn 3 (6) pp 68– (1972)
[66] van Leer, Towards the ultimate conservative difference scheme v: A second order sequel to Godunov’ method, J. Comput. Phys. 32 pp 101– (1979) · Zbl 1364.65223
[67] van Leer, Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes, Commun. Comput. Phys. 1 pp 192– (2006) · Zbl 1114.76049
[68] Thornber, On the implicit large eddy simulations of homogeneous decaying turbulence, J. Comput. Phys. 226 pp 1902– (2007) · Zbl 1219.76027
[69] Boris, Flux corrected transport: Shasta, a fluid transport algorithm that works, J. Comp. Phys. 11 pp 38– (1973) · Zbl 0251.76004
[70] Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (5) pp 995– (1984) · Zbl 0565.65048
[71] Zoltak, Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder, Comput. Method. Appl. M 162 pp 165– (1998)
[72] Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 pp 1073– (1988) · Zbl 0662.65081
[73] Gottlieb, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 pp 89– (2001)
[74] Spiteri, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal. 40 pp 469– (2002) · Zbl 1020.65064
[75] Courant, Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 100 (1) pp 32– (1928) · JFM 54.0486.01
[76] Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 43 pp 1– (1978) · Zbl 0387.76063
[77] 77. I. Toumi , A. Kumbaro , and H. Paillère , Approximate Riemann solvers and flux vector splitting schemes for two-phase flow, Technical Report, CEA Saclay, 1999.
[78] Benkhaldoun, A non-homogeneous riemann solver for shallow water and two phase flows, Flow, Turbul. Combust. 76 pp 391– (2006) · Zbl 1108.76043
[79] Ndjinga, Numerical simulation of hyperbolic two-phase flow models using a Roe-type solver, Nucl. Eng. Des. 238 pp 2075– (2008)
[80] Popinet, A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Meth. Fluids 30 pp 775– (1999) · Zbl 0940.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.