zbMATH — the first resource for mathematics

Non-periodic finite-element formulation of Kohn-Sham density functional theory. (English) Zbl 1193.81006
Summary: We present a real-space, non-periodic, finite-element formulation for Kohn-Sham density functional theory (KS-DFT). We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, we develop a parallel finite-element implementation of this formulation capable of performing both all-electron and pseudopotential calculations. We assess the accuracy of the formulation through selected test cases and demonstrate good agreement with the literature. We also evaluate the numerical performance of the implementation with regard to its scalability and convergence rates. We view this work as a step towards developing a method that can accurately study defects like vacancies, dislocations and crack tips using density functional theory (DFT) at reasonable computational cost by retaining electronic resolution where it is necessary and seamlessly coarse-graining far away.

81-08 Computational methods for problems pertaining to quantum theory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
81V55 Molecular physics
Full Text: DOI
[1] Anantharaman, A., Cances, E., 2008. On Kohn-Sham models with LDA and GGA exchange – correlation functionals. URL: \(\langle\)http://arxiv.org/abs/0809.5139v1〉.
[2] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, International journal for numerical methods in engineering, 65, 2167-2202, (2006) · Zbl 1146.74048
[3] Bachelet, G.B.; Hamann, D.R.; Schlüter, M., Pseudopotentials that work: from H to pu, Physical review B, 26, 8, 4199-4228, (1982)
[4] Bernstein, N.; Kermode, J.R.; Csanyi, G., Hybrid atomistic simulation methods for materials systems, Reports on progress in physics, 72, 2, 026501, (2009), (25pp.)
[5] Bey, J.; Aachen, R., Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes, Numerische Mathematik, 85, 1-29, (2000) · Zbl 0949.65128
[6] Bowler, D.; Choudhury, R.; Gillan, M.; Miyazaki, T., Recent progress with large-scale ab initio calculations: the CONQUEST code, Physica status solidi B—basic solid state physics, 243, 5, 989-1000, (2006)
[7] Car, R.; Parrinello, M., Unified approach for molecular dynamics and density-functional theory, Physical review letters, 55, 22, 2471-2474, (1985)
[8] Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C.A.; Andrade, X.; Lorenzen, F.; Marques, M.A.L.; Gross, E.K.U.; Rubio, A., Octopus: a tool for the application of time-dependent density functional theory, Physica status solidi B—basic solid state physics, 243, 11, 2465-2488, (2006)
[9] Ceperley, D.M.; Alder, B.J., Ground state of the electron gas by a stochastic method, Physical review letters, 45, 7, 566-569, (1980)
[10] Chelikowsky, J.R.; Troullier, N.; Saad, Y., Finite-difference-pseudopotential method: electronic structure calculations without a basis, Physical review letters, 72, 8, 1240-1243, (1994)
[11] Choly, N.; Lu, G.; Weinan, R.; Kaxiras, E., Multiscale simulations in simple metals: a density-functional-based methodology, Physical review B, 71, 9, 094101, (2005)
[12] Ciarlet, P., The finite-element method for elliptic problems, (2002), SIAM Philadelphia, PA
[13] Dal Maso, G., An introduction to \(\Gamma \text{-convergence}\), (1993), Birkhäuser Boston · Zbl 0816.49001
[14] Dennis, J.; Schnabel, R., Numerical methods for unconstrained optimization and nonlinear equations, (1996), SIAM Philadelphia, PA · Zbl 0847.65038
[15] Engel, E.; Höck, A.; Schmid, R.N.; Dreizler, R.M.; Chetty, N., Role of the core – valence interaction for pseudopotential calculations with exact exchange, Physical review B, 64, 12, 125111, (2001)
[16] Finnis, M., Interatomic forces in condensed matter, (2003), Oxford University Press Oxford
[17] Fiolhais, C.; Perdew, J.P.; Armster, S.Q.; MacLaren, J.M.; Brajczewska, M., Dominant density parameters and local pseudopotentials for simple metals, Physical review B, 51, 20, 14001-14011, (1995)
[18] Freund, R.W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM journal on scientific computing, 14, 2, 470-482, (1993) · Zbl 0781.65022
[19] Galli, G.; Parrinello, M., Large scale electronic structure calculations, Physical review letters, 69, 24, 3547-3550, (1992)
[20] García-Cervera, C.J.; Lu, J.; Weinan, R., A sub-linear scaling algorithm for computing the electronic structure of materials, Communications in mathematical sciences, 5, 4, 999-1026, (2007) · Zbl 1133.35429
[21] García-Cervera, C.J.; Lu, J.; Xuan, Y.; Weinan, R., Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for kohn – sham density functional theory, Physical review B (condensed matter and materials physics), 79, 11, 115110, (2009)
[22] Gavini, V.; Bhattacharya, K.; Ortiz, M., Quasi-continuum orbital-free density-functional theory: a route to multi-million atom non-periodic DFT calculation, Journal of the mechanics and physics of solids, 55, 4, 697-718, (2007) · Zbl 1162.74314
[23] Gavini, V.; Knap, J.; Bhattacharya, K.; Ortiz, M., Non-periodic finite-element formulation of orbital-free density functional theory, Journal of the mechanics and physics of solids, 55, 4, 669-696, (2007) · Zbl 1162.74461
[24] Gilbarg, D.; Trudinger, N., Elliptic differential equations of second order, (1983), Springer New York · Zbl 0691.35001
[25] Goedecker, S., Linear scaling electronic structure methods, Reviews of modern physics, 71, 4, 1085-1123, (1999)
[26] Gonze, X.; Beuken, J.M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; Torrent, M.; Roy, A.; Mikami, M.; Ghosez, P.; Raty, J.Y.; Allan, D.C., First-principles computation of material properties: the abinit software project, Computational materials science, 25, 478-492, (2002), (15pp.)
[27] Govind, N.; Wang, Y.A.; Carter, E.A., Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems, The journal of chemical physics, 110, 16, 7677-7688, (1999)
[28] Gygi, F.m.c.; Galli, G., Real-space adaptive-coordinate electronic-structure calculations, Physical review B, 52, 4, R2229-R2232, (1995)
[29] Hehre, W.J.; Stewart, R.F.; Pople, J.A., Self-consistent molecular-orbital methods. I. use of Gaussian expansions of Slater-type atomic orbitals, The journal of chemical physics, 51, 6, 2657-2664, (1969)
[30] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Physical review, 136, 3B, B864-B871, (1964)
[31] Huber, K., Constants of diatomic molecules, (1972), McGraw-Hill New York
[32] Ismail-Beigi, S.; Arias, T.A., New algebraic formulation of density functional calculation, Computer physics communications, 128, 1-2, 1-45, (2000) · Zbl 1003.81036
[33] Kleinman, L.; Bylander, D.M., Efficacious form for model pseudopotentials, Physical review letters, 48, 20, 1425-1428, (1982)
[34] Kohn, W., Nobel lecture: electronic structure of matter—wave functions and density functionals, Reviews of modern physics, 71, 5, 1253-1266, (1999)
[35] Kohn, W.; Sham, L.J., Self-consistent equations including exchange and correlation effects, Physical review, 140, 4A, A1133-A1138, (1965)
[36] Kotochigova, S.; Levine, Z.H.; Shirley, E.L.; Stiles, M.D.; Clark, C.W., Local-density-functional calculations of the energy of atoms, Physical review A, 55, 1, 191-199, (1997)
[37] Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B, 54, 16, 11169-11186, (1996)
[38] Langreth, D.C.; Mehl, M.J., Beyond the local-density approximation in calculations of ground-state electronic properties, Physical review B, 28, 4, 1809-1834, (1983)
[39] Lu, G.; Tadmor, E.B.; Kaxiras, E., From electrons to finite elements: a concurrent multiscale approach for metals, Physical review B (condensed matter and materials physics), 73, 2, 024108, (2006)
[40] Mauri, F.; Galli, G.; Car, R., Orbital formulation for electronic-structure calculations with linear system-size scaling, Physical review B, 47, 15, 9973-9976, (1993)
[41] Modine, N.A.; Zumbach, G.; Kaxiras, E., Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids, Physical review B, 55, 16, 10289-10301, (1997)
[42] Nogueira, F.; Fiolhais, C.; He, J.; Perdew, J.P.; Rubio, A., Transferability of a local pseudopotential based on solid-state electron density, Journal of physics: condensed matter, 8, 3, 287-302, (1996)
[43] Parr, R.; Yang, W., Density-functional theory of atoms and molecules, (1989), Oxford University Press Oxford
[44] Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A., Real-space local polynomial basis for solid-state electronic-structure calculations: a finite-element approach, Physical review B, 59, 19, 12352-12358, (1999)
[45] Pask, J.E.; Sterne, P.A., Finite element methods in ab initio electronic structure calculations, Modelling and simulation in materials science and engineering, 13, 3, R71-R96, (2005)
[46] Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of modern physics, 64, 4, 1045-1097, (1992)
[47] Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Physical review B, 46, 11, 6671-6687, (1992)
[48] Perdew, J.P.; Wang, Y., Accurate and simple analytic representation of the electron – gas correlation energy, Physical review B, 45, 23, 13244-13249, (1992)
[49] Perdew, J.P.; Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems, Physical review B, 23, 10, 5048-5079, (1981)
[50] Pickett, W.E., Pseudopotential methods in condensed matter applications, Computer physics reports, 9, 3, 115-197, (1989)
[51] Rappe, A.M.; Rabe, K.M.; Kaxiras, E.; Joannopoulos, J.D., Optimized pseudopotentials, Physical review B, 41, 2, 1227-1230, (1990)
[52] Roothaan, C.C.J., New developments in molecular orbital theory, Reviews of modern physics, 23, 2, 69-89, (1951) · Zbl 0045.28502
[53] Rudin, W., Functional analysis, (1991), Mc Graw-Hill New York · Zbl 0867.46001
[54] Saad, Y., Numerical methods for large eigenvalue problems, (1992), Manchester University Press · Zbl 0991.65039
[55] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM journal on scientific and statistical computing, 7, 3, 856-869, (1986) · Zbl 0599.65018
[56] Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, Journal of physics: condensed matter, 14, 11, 2717-2744, (2002)
[57] Skylaris, C.-K.; Haynes, P.D.; Mostofi, A.A.; Payne, M.C., Introducing ONETEP: linear-scaling density functional simulations on parallel computers, The journal of chemical physics, 122, 8, 084119, (2005)
[58] Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation, Journal of physics: condensed matter, 14, 11, 2745-2779, (2002)
[59] Struwe, M., Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems, (1990), Springer Berlin · Zbl 0746.49010
[60] Thoutireddy, P., 2002. Variational arbitrary Lagrangian-Eulerian method. Ph.D. Thesis, California Institute of Technology.
[61] Troullier, N.; Martins, J.L., Efficient pseudopotentials for plane-wave calculations, Physical review B, 43, 3, 1993-2006, (1991)
[62] Tsuchida, E., Ab initio molecular-dynamics study of liquid formamide, The journal of chemical physics, 121, 10, 4740-4746, (2004)
[63] van der Vorst, H.A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM journal on scientific and statistical computing, 13, 2, 631-644, (1992) · Zbl 0761.65023
[64] Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical review B, 41, 11, 7892-7895, (1990)
[65] Veillard, A.; Clementi, E., Correlation energy in atomic systems. v. degeneracy effects for the second-row atoms, The journal of chemical physics, 49, 5, 2415-2421, (1968)
[66] Wills, J.M.; Cooper, B.R., Synthesis of band and model Hamiltonian theory for hybridizing cerium systems, Physical review B, 36, 7, 3809-3823, (1987)
[67] Zumbach, G.; Modine, N.A.; Kaxiras, E., Adaptive coordinate, real-space electronic structure calculations on parallel computers, Solid state communications, 99, 2, 57-61, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.