zbMATH — the first resource for mathematics

NTGsim: a graphical user interface and a 3D simulator for nonlinear trajectory generation methodology. (English) Zbl 1196.93020
Summary: Nonlinear Trajectory Generation (NTG), developed by Mark Milam, is a software algorithm used to generate trajectories of constrained nonlinear systems in real-time. The goal of this paper is to present an approach to make NTG more user-friendly. To accomplish this, we have programmed a Graphical User Interface (GUI) in Java, using object oriented design, which wraps the NTG software and allows the user to quickly and efficiently alter the parameters of NTG. This new program, called NTGsim, eliminates the need to reprogram the NTG algorithm explicitly each time the user wishes to change a parameter.
93B40 Computational methods in systems theory (MSC2010)
93C10 Nonlinear systems in control theory
68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
Full Text: DOI EuDML
[1] Bhattacharya, R. (2006). Optragen: A Matlab toolbox for optimal trajectory generation, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6832-6836.
[2] Bryson, A. E. J. and Ho, Y. C. (1975). Applied Optimal Control: Optimization, Estimation and Control, Taylor and Francis, Levittown, PA.
[3] Davison, A. (2005). Killer Game Programming in Java, O’Reilly Media Inc., Sebastopol, CA.
[4] de Boor, C. (2001). A Practical Guide to Splines, Springer-Verlag, New York, NY. · Zbl 0987.65015
[5] Freeman, E. and Freeman, E. (2004). Head First Design Patterns, O’Reilly Media Inc., Sebastopol, CA.
[6] Gill, P. E., Murray, W., Saunders, M. and Wright, M. (n.d.). NPSOL-Nonlinear Programming Software, Stanford Business Software Inc., Mountain View, CA.
[7] Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005). The Java Language Specification, Prentice Hall PTR, Englewood Cliffs, NJ. · Zbl 0865.68001
[8] Gosling, J. and McGilton, H. (1996). Original Java whitepaper · java.sun.com
[9] Inanc, T., Misovec, K. and Murray, R. M. (2004). Nonlinear trajectory generation for unmanned air vehicles with multiple radars, Proceedings of the 43th IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 3817-3822.
[10] Milam, M. (2002). Missile interception research report, California Institute of Technology Internal Report · www.cds.caltech.edu
[11] Milam, M. B. (2003). Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems, Ph.D. thesis, California Institute of Technology, Pasadena, CA.
[12] Milam, M., Mushambi, K. and Murray, R. (2000). A new computational approach to real-time trajectory generation for constrained mechanical systems, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 845-851.
[13] Misovec K., Inanc T., J. W. and Murray, R. M. (2003). Low-observable nonlinear trajectory generation for unmanned air vehicles, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, pp. 3103-3110.
[14] Muezzinoglu, M. K. and Inanc, T. (2006). Trajectory generation in guided spaces using artificial neural networks and ntg algorithm, Proceedings of the American Control Conference, Minneapolis, MN, USA, pp. 5776-5781.
[15] Lian, F.-L. and Murray, R. (2003). Cooperative task planning of multi-robot systems with temporal constraints, Proceedings of the International Conference on Robotics and Automation, Taipei, Taiwan, pp. 2504-2509.
[16] Liang, S. (1999). Java Native Interface: Programmer’s Guide and Specification, Prentice Hall PTR, Englewood Cliffs, NJ.
[17] Sierra, K. and Bates, B. (2005). Head First Java, O’Reilly Media Inc., Sebastopol, CA.
[18] Sun Microsystems, I. (2006). Java se 6 api javadocs · java.sun.com
[19] Trapani, L. J. D. and Inanc, T. (2009). Ntgsim: A graphical user interface for the nonlinear trajectory generation algorithm, Proceedings of the American Control Conference, ACC 2009, St. Louis, MO, USA, pp. 402-407.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.