Hellegouarch, Y.; Paysant-le Roux, R. Commas, points extrémaux et arêtes des corps possédant une formule du produit. (Commas, extremal points and edges of fields with product formula). (French) Zbl 0578.12001 C. R. Math. Acad. Sci., Soc. R. Can. 7, 291-296 (1985). The authors define and investigate the notions of ”commas”, ”extremal points” and ”arrows” in a field E possessing a set of absolute values (”places”) with a product formula, as defined by E. Artin. Such points are elements of E with certain minimality properties with respect to a finite set S of places. For global fields E, upper bounds are given for the number of orbits of such sets under the action of the group of S- units, depending on a) Riemann-Roch’s theorem (if E is a global function field); b) Minkowski’s lemma (if E is a number field). Reviewer: E.-U.Gekeler Cited in 2 Documents MSC: 11R04 Algebraic numbers; rings of algebraic integers 11R58 Arithmetic theory of algebraic function fields 11H99 Geometry of numbers Keywords:commas; extremal points; arrows; absolute values; places; product formula; minimality properties; Riemann-Roch’s theorem; global function field; Minkowski’s lemma; number field × Cite Format Result Cite Review PDF