zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Applications of fuzzy set theory to mathematical programming. (English) Zbl 0578.90095
Summary: Mathematical programming is one of the areas to which fuzzy set theory has been applied extensively. Primarily based on Bellman and Zadeh’s model of decision in fuzzy environments, models have been suggested which allow flexibility in constraints and fuzziness in the objective function in traditional linear and nonlinear programming, in integer and fractional programming, and in dynamic programming. These models in turn have been used to offer computationally efficient approaches for solving vector maximum problems. This paper surveys major models and theories in this area and offers some indication on future developments which can be expected.

90C99Mathematical programming
03E72Fuzzy set theory
90-02Research monographs (optimization)
Full Text: DOI
[1] Behringer, F. A.: Lexicographic quasiconcave multiobjective programming. Z. oper. Res. 21, 103-116 (1977) · Zbl 0362.90101
[2] Behringer, F. A.: A simplex based algorithm for the lexicographically extended linear maxmin problem. European J. Oper. res. 7, 274-283 (1981) · Zbl 0455.90053
[3] Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment. Management sci. 17, B141-B164 (1970) · Zbl 0224.90032
[4] Chanas, S.: The use of parametric programming in fuzzy linear programming. Fuzzy sets and systems 11, 243-251 (1983) · Zbl 0534.90056
[5] Chang, L. L.: Interpretation and execution of fuzzy programs. 191-218 (1975) · Zbl 0322.68057
[6] Fabian, L.; Stoica, M.: Fuzzy integer programming. 123-132 (1984) · Zbl 0546.90067
[7] Hamacher, H.: Über logische aggregationen nicht binär expliziter entscheidungskriterien. (1978)
[8] Hamacher, H.; Leberling, H.; Zimmermann, H. -J.: Sensitivity analysis in fuzzy linear programming. Fuzzy sets and systems 1, 269-281 (1978) · Zbl 0408.90051
[9] Hannan, E. L.: Linear programming with multiple fuzzy goals. Fuzzy sets and systems 6, 235-248 (1981) · Zbl 0465.90080
[10] Kuhn, H. W.; Tucker, A. W.: Nonlinear programming. Proceedings of the 2nd Berkeley symposium on mathematical statistics and probability (1951) · Zbl 0044.05903
[11] Leberling, H.: On finding compromise solutions in multicriteria problems using the fuzzy MIN-operator. Fuzzy sets and systems 6, 105-118 (1981) · Zbl 0465.90081
[12] Leberling, H.: Entscheidungsfindung bei divergierenden faktorinteressen und relaxierten kapazitätsrestriktionen mittels eines unscharfen lösungsansatzes. Z. betriebsw. Forsch. 35, 398-419 (1983)
[13] Luhandjula, M. K.: Linear programming under randomness and fuzziness. Fuzzy sets and systems 10, 45-55 (1983) · Zbl 0514.90067
[14] Luhandjula, M. K.: Fuzzy approaches for multiple objective linear fractional optimization. Fuzzy sets and systems 13, 11-24 (1984) · Zbl 0546.90094
[15] K. Nakamura, Some extension of fuzzy linear programming, Fuzzy Sets and Systems, to appear.
[16] Orlovsky, S. A.: On programming with fuzzy constraint sets. Kybernetes 6, 197-201 (1977) · Zbl 0369.90129
[17] Ostasiewicz, W.: A new approach to fuzzy programming. Fuzzy sets and systems 7, 139-152 (1982) · Zbl 0474.68007
[18] Rödder, W.; Zimmermann, H. -J.: Analyse, beschreibung und optimierung von unscharf formulierten problemen. Z. oper. Res. 21, 1-18 (1977) · Zbl 0397.90099
[19] Rödder, W.; Zimmerman, H. -J.: Duality in fuzzy linear programming. Extremal methods and systems analyses, 415-429 (1980)
[20] Rubin, P. A.; Narasimhan, R.: Fuzzy goal programming with rested priorities. Fuzzy sets and systems 14, 115-130 (1984) · Zbl 0546.90092
[21] Tanaka, H.; Asai, K.: Fuzzy linear programming problems with fuzzy numbers. Fuzzy sets and systems 13, 1-10 (1984) · Zbl 0546.90062
[22] Tanaka, K.; Mizumoto, M.: Fuzzy programs and their execution. 41-76 (1975) · Zbl 0314.68008
[23] Tanaka, H.; Okuda, T.; Asai, K.: On fuzzy mathematical programming. J. cybern. 3, 37-46 (1974) · Zbl 0297.90098
[24] Thole, U.; Zimmermann, H. -J.; Zysno, P.: On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy sets and systems 2, 167-180 (1979) · Zbl 0408.94030
[25] Verdegay, J. L.: A dual approach to solve the fuzzy linear programming problem. Fuzzy sets and systems 14, 131-141 (1984) · Zbl 0549.90064
[26] Werners, B.: Interaktive entscheidungsunterstützung durch ein flexibles mathematisches programmierungssystem. (1984)
[27] Zadeh, L. A.: On fuzzy algorithms. Memo ERL-M325 (1972) · Zbl 0305.94001
[28] Zadeh, L. A.; Fu, K. S.; Tanaka, K.; Shimura, M.: Fuzzy sets and their applications to cognitive and decision processes. (1975) · Zbl 0307.00008
[29] Zangwill, W. I.: Nonlinear programming. (1969) · Zbl 0191.49101
[30] Zimmermann, H. -J.: Description and optimization of fuzzy systems. Internat. J. Gen. systems 2, 209-215 (1976) · Zbl 0338.90055
[31] Zimmermann, H. -J.: Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems 1, 45-55 (1978) · Zbl 0364.90065
[32] Zimmermann, H. -J.; Zysno, P.: Latent connectives in human decision making. Fuzzy sets and systems 4, 37-51 (1980) · Zbl 0435.90009
[33] Zimmermann, H. -J.; Zysno, P.: Decisions and evaluations by hierarchical aggregation of information. Fuzzy sets and systems 10, 243-266 (1983) · Zbl 0519.90049
[34] Zimmermann, H. -J.; Zadeh, L. A.; Gaines, B. R.: Fuzzy sets and decision analysis. (1984) · Zbl 0534.00023
[35] Karmarkar, N.: A new polynomial-time algorithm in linear programming. Proceedings of the 16th annual ACM symposia on the theory of computing, 302-310 (1984) · Zbl 0557.90065