# zbMATH — the first resource for mathematics

On the theory of Banach space valued multifunctions. II: Set valued martingales and set valued measures. (English) Zbl 0579.28010
This paper studies the convergence of set-valued martingales both in the Hausdorff metric and in the Kuratowski-Mosco sense. Then it proceeds and examines the measurability and integrability properties of the extreme points of multifunctions. Also the notion of weak convergence of multifunction is introduced, studied and compared with other modes of set convergence. This leads to a new convergence result for set-valued martingales. Finally set-valued measures are considered and an integral with respect to a set-valued measure is introduced and studied.

##### MSC:
 28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections 46G10 Vector-valued measures and integration 60G48 Generalizations of martingales
Full Text:
##### References:
 [1] Alo, R; de Korvin, A; Roberts, C, p-integrable selectors of multimeasures, Int. J. math. math. sci., 2, 209-221, (1979) · Zbl 0413.28011 [2] Alo, R; de Korvin, A; Roberts, C, On some properties of continuous multimeasures, J. math. anal. appl., 75, 402-410, (1980) · Zbl 0482.28019 [3] Artstein, Z, Set valued measures, Trans. amer. math. soc., 165, 103-125, (1972) · Zbl 0237.28008 [4] Artstein, Z, Weak convergence of set valued functions and control, SIAM J. control, 13, 865-878, (1975) · Zbl 0276.93015 [5] Ash, R, () [6] Benamara, M, Sections measurables extremales d’une multiplication, C. R. acad. sci., 278, 1249-1252, (1974) · Zbl 0285.28009 [7] Bismut, J.M, Integrates convexes et probabilités, J. math. anal. appl., 42, 639-673, (1973) · Zbl 0268.60003 [8] Brooks, J; Dinculeanu, N, Weak compactness of spaces of Bochner integrable functions and applications, Adv. in math., 24, 172-188, (1977) · Zbl 0354.46026 [9] Castaing, Ch, La théorème de Dunford-Pettis géneralisé, C. R. acad. sci., 238, 327-329, (1969) · Zbl 0184.40203 [10] Castaing, C; Valadier, M, (), Lecture Notes in Mathematics No. 560 · Zbl 0778.46016 [11] Chung, K.L, () [12] Costé, A, Sur LES multimeasures á valeurs fermées bornées d’un espace de Banach, C. R. acad. sci., 280, 327-329, (1975) [13] Costé, A, La propriété de Radon-Nikodym en intégration multivogue, C. R. acad. sci., 280, 1515-1518, (1975) · Zbl 0313.28007 [14] Costé, A, Densité des sélecteurs d’une multimeasure à valeurs fermées bornées d’un espace Banach separable, C. R. acad. sci. sci., 282, 967-969, (1976) · Zbl 0342.46035 [15] Costé, A; Pallu de la Barrière, R, Sur pensemble des sections d’une multimeasure à valeurs convexes fermées, C. R. acad. sci., 282, 829-832, (1976) · Zbl 0343.28007 [16] Costé, A; Pallu de la Barrière, R, Un théorème de Radon-Nikodym pour LES multimeasures à valeurs, converes, fermées localement compactes sans droit, C. R. acad. sci., 280, 255-258, (1945) · Zbl 0299.46041 [17] Day, M.M, () [18] Debreu, G; Schmeidler, D, The R-N derivative of a correspondence, (), 41-50 [19] Diestel, J; Uhl, J.J, (), Math Surveys [20] Dinculeanu, N, () [21] Dolecki, S; Salinetti, G; Wets, R, Convergence of functions; equisemicontinuity, Trans. amer. math. soc., 276, 409-429, (1983) · Zbl 0504.49006 [22] Godet-Thobie, C, Selections de multimeasures. application à un théorème de Radon-Nikodym multivoque, C. R. acad. sci., 279, 603-606, (1974) · Zbl 0307.28013 [23] Hiai, F; Umegaki, H, Integrals, conditional expectations and martingales of multivalued functions, J. multivar. anal., 7, 149-182, (1977) · Zbl 0368.60006 [24] Hiai, F, Radon-Nikodym theorems for set valued measures, J. multivar. anal., 8, 96-118, (1978) · Zbl 0384.28006 [25] Himmelberg, C; Van Vleck, F.S, Extreme points of multifunctions, Indiana univ. J. math., 22, 719-729, (1973) · Zbl 0274.28008 [26] Kluvanek, I; Knowles, G, () [27] Mosco, U, On the continuity of the Young-Fenchel transform, J. math. anal. appl., 35, 518-535, (1971) · Zbl 0253.46086 [28] Papageorgiou, N.S, On the theory of Banach valued multifunctions. 1. integration and conditional expectation, J. multivar. anal., 16, (1983) [29] Rockafellar, R.T, Integral functionals, normal integrands and measurable selections, (), 172-207 [30] Salinetti, G; West, R, On the relations between two types of convergence of convex functions, J. math. anal. appl., 60, 211-226, (1977) · Zbl 0359.54005 [31] Tweddle, I, The range of vector valued measures, Glasgow J. math., 13, 64-68, (1972) · Zbl 0274.46034 [32] Valadier, M, On conditional expectation of random sets, Ann. mat. pura appl., 81-91, (1981) · Zbl 0465.60006 [33] Himmelberg, C, Measurable relations, Fund. math., 87, 53-72, (1975) · Zbl 0296.28003 [34] Hildenbrand, W, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.