×

zbMATH — the first resource for mathematics

On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. (English) Zbl 0579.35016
This work is concerned with global existence, uniqueness and asymptotic behaviour of solutions to the boundary value problem \[ -\Delta u=\epsilon^{-1}q(f+p-n)\quad in\quad (0,T)\times G;\quad qn_ t=\nabla \cdot j_ n-qR,\quad j_ n=q(D_ n\nabla n-\mu p\nabla u) \] \[ q\frac{\partial p}{\partial t}=-\nabla \cdot j_ p-qR,\quad j_ p=- q(D_ p\nabla p+\mu p\nabla u);\quad u=u_ s,\quad n=n_ s,\quad p=p_ s\quad in\quad (0,T)\times S_ 1 \] \[ \frac{\partial u}{\partial \nu}+\alpha u=u_ s,\quad \nu \cdot j_ n=\nu j_ p=0\quad in\quad (0,T)\times S_ 2;\quad n(0,x)=n_ 0(x),\quad p(0,x)=p_ 0(x)\quad in\quad G \] which serves as model of mobile carrier transport in semiconductors. The proof relies on global a priori estimates obtained from the monotonicity of a certain Lyapunov function.
Reviewer: V.Barbu

MSC:
35G20 Nonlinear higher-order PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud. 5, Amsterdam 1973. · Zbl 0252.47055
[2] ; , (Ed.), Numerical Analysis of Semiconductor Devices, Proceedings of the NASECODE I Conference held at Trinity Coll. Dublin, June. 1979, Body Prress Dublin 1979.
[3] Exakte Berechnung der Verlustleistungsdichte in Halbleitern, Inform. der TU Dresden, 09-20-79.
[4] ; ; , Rechnergestützte Analyse in der Elektronik, Verlag Technik, Berlin 1977.
[5] [Russian Text Ignored.] 1967.
[6] Mock, Commun. Pure Appl. Math. 25 pp 781– (1972)
[7] ; , Halbleiterelektroni, Lehrbuch, Verlag Technik, Berlin 1973.
[8] Nassif, C. R. Acad. Sci., Paris Série I 294 pp 119– (1982)
[9] et al., A continuation method for the calculation of electrostatic potentials in semiconductors, in Ref. [2].
[10] Höhere Analysis, Verlatg der Wiss. Berlin 1972.
[11] Interpolation Theory, Function Spaces, Differential Operators, Verlag der Wiss. Berlin 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.